Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Aug;155(2):454–458. doi: 10.1128/jb.155.2.454-458.1983

Production of nitrous oxide from nitrite in Klebsiella pneumoniae: mutants altered in nitrogen metabolism.

T Satoh, S S Hom, K T Shanmugam
PMCID: PMC217709  PMID: 6348020

Abstract

Under anaerobic conditions, Klebsiella pneumoniae reduced nitrite (NO2-), yielding nitrous oxide (N2O) and ammonium ions (NH4+) as products. Nitrous oxide formation accounted for about 5% of the total NO2- reduced, and NH4+ production accounted for the remainder. Glucose and pyruvate were the electron donors for NO2- reduction to N2O by whole cells, whereas glucose, NADH, and NADPH were found to be the electron donors when cell extracts were used. On the one hand, formate failed to serve as an electron donor for NO2- reduction to N2O and NH4+, whereas on the other hand, formate was the best electron donor for nitrate reduction in either whole cells or cell extracts. Mutants that are defective in the reduction of NO2- to NH4+ were isolated, and these strains were found to produce N2O at rates comparable to that of the parent strain. These results suggest that the nitrite reductase producing N2O is distinct from that producing NH4+. Nitrous oxide production from nitric oxide (NO) occurred in all mutants tested, at rates comparable to that of the parent strain. This result suggests that NO reduction to N2O, which also uses NADH as the electron donor, is independent of the protein(s) catalyzing the reduction of NO2- to N2O.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. 't Riet J van, Stouthamer A. H., Planta R. J. Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J Bacteriol. 1968 Nov;96(5):1455–1464. doi: 10.1128/jb.96.5.1455-1464.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abou-Jaoudé A., Chippaux M., Pascal M. C., Casse F. Formate : a new electron donor for nitrite reduction in Escherichia coli K12. Biochem Biophys Res Commun. 1977 Sep 23;78(2):579–583. doi: 10.1016/0006-291x(77)90218-2. [DOI] [PubMed] [Google Scholar]
  3. Averill B. A., Tiedje J. M. The chemical mechanism of microbial denitrification. FEBS Lett. 1982 Feb 8;138(1):8–12. doi: 10.1016/0014-5793(82)80383-9. [DOI] [PubMed] [Google Scholar]
  4. Cole J. A. Microbial gas metabolism. Adv Microb Physiol. 1976;14(11):1–92. doi: 10.1016/s0065-2911(08)60226-x. [DOI] [PubMed] [Google Scholar]
  5. Cole J. A., Ward F. B. Nitrite reductase-deficient mutants of Escherichia coli K12. J Gen Microbiol. 1973 May;76(1):21–29. doi: 10.1099/00221287-76-1-21. [DOI] [PubMed] [Google Scholar]
  6. Coleman K. J., Cornish-Bowden A., Cole J. A. Purification and properties of nitrite reductase from Escherichia coli K12. Biochem J. 1978 Nov 1;175(2):483–493. doi: 10.1042/bj1750483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hom S. S., Hennecke H., Shanmugam K. T. Regulation of nitrogenase biosynthesis in Klebsiella pneumoniae: effect of nitrate. J Gen Microbiol. 1980 Mar;117(1):169–179. doi: 10.1099/00221287-117-1-169. [DOI] [PubMed] [Google Scholar]
  8. Jackson R. H., Cornish-Bowden A., Cole J. A. Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem J. 1981 Mar 1;193(3):861–867. doi: 10.1042/bj1930861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KEMP J. D., ATKINSON D. E., EHRET A., LAZZARINI R. A. EVIDENCE FOR THE IDENTITY OF THE NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-SPECIFIC SULFITE AND NITRITE REDUCTASES OF ESCHERICHIA COLI. J Biol Chem. 1963 Oct;238:3466–3471. [PubMed] [Google Scholar]
  10. Lambden P. R., Guest J. R. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol. 1976 Dec;97(2):145–160. doi: 10.1099/00221287-97-2-145. [DOI] [PubMed] [Google Scholar]
  11. Newman B. M., Cole J. A. The chromosomal location and pleiotropic effects of mutations of the nirA+ gene of Escherichia coli K12: the essential role of nirA+ in nitrite reduction and in other anaerobic redox reactions. J Gen Microbiol. 1978 May;106(1):1–12. doi: 10.1099/00221287-106-1-1. [DOI] [PubMed] [Google Scholar]
  12. Pope N. R., Cole J. A. Generation of a membrane potential by one of two independent pathways for nitrite reduction by Escherichia coli. J Gen Microbiol. 1982 Jan;128(1):219–222. doi: 10.1099/00221287-128-1-219. [DOI] [PubMed] [Google Scholar]
  13. Smith M. S. Dissimilatory Reduction of NO(2) to NH(4) and N(2)O by a Soil Citrobacter sp. Appl Environ Microbiol. 1982 Apr;43(4):854–860. doi: 10.1128/aem.43.4.854-860.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Streicher S., Gurney E., Valentine R. C. Transduction of the nitrogen-fixation genes in Klebsiella pneumoniae. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1174–1177. doi: 10.1073/pnas.68.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES