Abstract
The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhadra R., Datta P. Allosteric inhibition and catabolite inactivation of purified biodegradative threonine dehydratase of Salmonella typhimurium. Biochemistry. 1978 May 2;17(9):1691–1699. doi: 10.1021/bi00602a017. [DOI] [PubMed] [Google Scholar]
- Botsford J. L. Cyclic nucleotides in procaryotes. Microbiol Rev. 1981 Dec;45(4):620–642. doi: 10.1128/mr.45.4.620-642.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunne C. P., Wood W. A. L-threonine dehydrase as a model of allosteric control involving ligand-induced oligomerization. Curr Top Cell Regul. 1975;9:65–101. doi: 10.1016/b978-0-12-152809-6.50010-x. [DOI] [PubMed] [Google Scholar]
- Egan R. M., Phillips A. T. Requirements for induction of the biodegradative threonine dehydratase in Escherichia coli. J Bacteriol. 1977 Nov;132(2):370–376. doi: 10.1128/jb.132.2.370-376.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman D. A., Datta P. Catabolite inactivation of biodegradative threonine dehydratase of Escherichia coli. Biochemistry. 1975 Apr 22;14(8):1760–1767. doi: 10.1021/bi00679a031. [DOI] [PubMed] [Google Scholar]
- Goldstein I. J., So L. L. Protein-carbonhydrate interaction. 3. Agar gel-diffusion studies on the interaction of Concanavalin A, a lectin isolated from jack bean, with polysaccharides. Arch Biochem Biophys. 1965 Aug;111(2):407–414. doi: 10.1016/0003-9861(65)90203-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Luginbuhl G. H., Hofler J. G., Decedue C. J., Burns R. O. Biodegradative L-threonine deaminase of Salmonella typhimurium. J Bacteriol. 1974 Oct;120(1):559–561. doi: 10.1128/jb.120.1.559-561.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
- Merberg D., Datta P. Altered expression of biodegradative threonine dehydratase in Escherichia coli mutants. J Bacteriol. 1982 Apr;150(1):52–59. doi: 10.1128/jb.150.1.52-59.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park L. S., Datta P. Mechanism of catabolite inactivation of Escherichia coli biodegradative threonine dehydratase by glyoxylate. J Biol Chem. 1981 Jun 10;256(11):5362–5367. [PubMed] [Google Scholar]
- Park L. S., Datta P. The role of glyoxylate in the regulation of biodegradative threonine dehydratase of Escherichia coli. J Biol Chem. 1979 Aug 25;254(16):7927–7934. [PubMed] [Google Scholar]
- Phillips A. T., Egan R. M., Lewis B. Control of biodegradative threonine dehydratase inducibility by cyclic AMP in energy-restricted Escherichia coli. J Bacteriol. 1978 Sep;135(3):828–840. doi: 10.1128/jb.135.3.828-840.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quay S. C., Dick T. E., Oxender D. L. Role of transport systems in amino acid metabolism: leucine toxicity and the branched-chain amino acid transport systems. J Bacteriol. 1977 Mar;129(3):1257–1265. doi: 10.1128/jb.129.3.1257-1265.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
- Shizuta Y., Hayaishi O. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1970 Oct 25;245(20):5416–5423. [PubMed] [Google Scholar]
- UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105–112. doi: 10.1128/jb.73.1.105-112.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
- Yui Y., Watanabe Y., Ito S., Shizuta Y., Hayaishi O. Multivalent induction of biodegradative threonine deaminase. J Bacteriol. 1977 Nov;132(2):363–369. doi: 10.1128/jb.132.2.363-369.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]