Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Aug;155(2):776–792. doi: 10.1128/jb.155.2.776-792.1983

Peptidoglycan synthesis by partly autolyzed cells of Bacillus subtilis W23.

C R Harrington, J Baddiley
PMCID: PMC217750  PMID: 6307981

Abstract

Partly autolyzed, osmotically stabilized cells of Bacillus subtilis W23 synthesized peptidoglycan from the exogenously supplied nucleotide precursors UDP-N-acetylglucosamine and UDP-N-acetylmuramyl pentapeptide. Freshly harvested cells did not synthesize peptidoglycan. The peptidoglycan formed was entirely hydrolyzed by N-acetylmuramoylhydrolase, and its synthesis was inhibited by the antibiotics bacitracin, vancomycin, and tunicamycin. Peptidoglycan formation was optimal at 37 degrees C and pH 8.5, and the specific activity of 7.0 nmol of N-acetylglucosamine incorporated per mg of membrane protein per h at pH 7.5 was probably decreased by the action of endogenous wall autolysins. No cross-linked peptidoglycan was formed. In addition, a lysozyme-resistant polymer was also formed from UDP-N-acetylglucosamine alone. Peptidoglycan synthesis was inhibited by trypsin and p-chloromercuribenzenesulfonic acid, and we conclude that it occurred at the outer surface of the membrane. Although phospho-N-acetylmuramyl pentapeptide translocase activity was detected on the outside surface of the membrane, no transphosphorylation mechanism was observed for the translocation of UDP-N-acetylglucosamine. Peptidoglycan was similarly formed with partly autolyzed preparations of B. subtilis NCIB 3610, B. subtilis 168, B. megaterium KM, and B. licheniformis ATCC 9945. Intact protoplasts of B. subtilis W23 did not synthesize peptidoglycan from externally supplied nucleotides although the lipid intermediate was formed which was inhibited by tunicamycin and bacitracin. It was therefore considered that the lipid cycle had been completed, and the absence of peptidoglycan synthesis was believed to be due to the presence of lysozyme adhering to the protoplast membrane. The significance of these results and similar observations for teichoic acid synthesis (Bertram et al., J. Bacteriol. 148:406-412, 1981) is discussed in relation to the translocation of bacterial cell wall polymers.

Full text

PDF
776

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Douglas L. J., Hussey H., Baddiley J. The control of synthesis of bacterial cell walls. Interaction in the synthesis of nucleotide precursors. Biochem J. 1973 Dec;136(4):871–876. doi: 10.1042/bj1360871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Hussey H., Baddiley J. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J. 1972 Mar;127(1):11–25. doi: 10.1042/bj1270011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baddiley J., Blumsom N. L., Douglas L. J. The biosynthesis of the wall teichoic acid in Staphylococcus lactis I3. Biochem J. 1968 Dec;110(3):565–571. doi: 10.1042/bj1100565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnett H. J. D-alanine carboxypeptidases of Bacillus stearothermophilus: solubilisation of particulate enzymes and mechanism of action of penicillin. Biochim Biophys Acta. 1973 Apr 28;304(2):332–352. doi: 10.1016/0304-4165(73)90252-3. [DOI] [PubMed] [Google Scholar]
  6. Bergsma J., Strijker R., Alkema J. Y., Seijen H. G., Konings W. N. NADH dehydrogenase and NADH oxidation in membrane vesicle from Bacillus subtilis. Eur J Biochem. 1981 Dec;120(3):599–606. doi: 10.1111/j.1432-1033.1981.tb05742.x. [DOI] [PubMed] [Google Scholar]
  7. Bertram K. C., Hancock I. C., Baddiley J. Synthesis of teichoic acid by Bacillus subtilis protoplasts. J Bacteriol. 1981 Nov;148(2):406–412. doi: 10.1128/jb.148.2.406-412.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bettinger G. E., Young F. E. Tunicamycin, an inhibitor of Bacillus peptidoglycan synthesis: a new site of inhibition. Biochem Biophys Res Commun. 1975 Nov 3;67(1):16–21. doi: 10.1016/0006-291x(75)90276-4. [DOI] [PubMed] [Google Scholar]
  9. Bracha R., Glaser L. An intermediate in telchoic acid biosynthesis. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1091–1098. doi: 10.1016/s0006-291x(76)80244-6. [DOI] [PubMed] [Google Scholar]
  10. CAPUTTO R., LELOIR L. F., CARDINI C. E., PALADINI A. C. Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J Biol Chem. 1950 May;184(1):333–350. [PubMed] [Google Scholar]
  11. Carey D. J., Sommers L. W., Hirschberg C. B. CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes. Cell. 1980 Mar;19(3):597–605. doi: 10.1016/s0092-8674(80)80036-5. [DOI] [PubMed] [Google Scholar]
  12. Chin T., Burger M. M., Glaser L. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23. Arch Biochem Biophys. 1966 Sep 26;116(1):358–367. doi: 10.1016/0003-9861(66)90042-7. [DOI] [PubMed] [Google Scholar]
  13. Coley J., Tarelli E., Archibald A. R., Baddiley J. The linkage between teichoic acid and peptidoglycan in bacterial cell walls. FEBS Lett. 1978 Apr 1;88(1):1–9. doi: 10.1016/0014-5793(78)80594-8. [DOI] [PubMed] [Google Scholar]
  14. Delmer D. P., Benziman M., Padan E. Requirement for a membrane potential for cellulose synthesis in intact cells of Acetobacter xylinum. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5282–5286. doi: 10.1073/pnas.79.17.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Douglas L. J., Baddiley J. A lipid intermediate in the biosynthesis of a teichoic acid. FEBS Lett. 1968 Aug;1(2):114–116. doi: 10.1016/0014-5793(68)80034-1. [DOI] [PubMed] [Google Scholar]
  16. Glaser L., Lindsay B. Relation between cell wall turnover and cell growth in Bacillus subtilis. J Bacteriol. 1977 May;130(2):610–619. doi: 10.1128/jb.130.2.610-619.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hancock I. C., Baddiley J. Solubilisation of a teichoic acid-synthesising system from the membrane of Bacillus licheniformis by freezing and thawing. FEBS Lett. 1973 Aug 1;34(1):15–18. doi: 10.1016/0014-5793(73)80692-1. [DOI] [PubMed] [Google Scholar]
  18. Hancock I. C. The biosynthesis of wall teichoic acid by toluenised cells of Bacillus subtilis W23. Eur J Biochem. 1981 Sep;119(1):85–90. doi: 10.1111/j.1432-1033.1981.tb05580.x. [DOI] [PubMed] [Google Scholar]
  19. Hanover J. A., Lennarz W. J. The topological orientation of N,N'-diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes. J Biol Chem. 1979 Sep 25;254(18):9237–9246. [PubMed] [Google Scholar]
  20. Hanover J. A., Lennarz W. J. Transmembrane assembly of N-linked glycoproteins. Studies on the topology of saccharide synthesis. J Biol Chem. 1982 Mar 25;257(6):2787–2794. [PubMed] [Google Scholar]
  21. Hanover J. A., Lennarz W. J. Transmembrane assembly of membrane and secretory glycoproteins. Arch Biochem Biophys. 1981 Oct 1;211(1):1–19. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
  22. Haselbeck A., Tanner W. Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1520–1524. doi: 10.1073/pnas.79.5.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heptinstall S., Archibald A. R., Baddiley J. Teichoic acids and membrane function in bacteria. Nature. 1970 Feb 7;225(5232):519–521. doi: 10.1038/225519a0. [DOI] [PubMed] [Google Scholar]
  24. Higashi Y., Strominger J. L., Sweeley C. C. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1878–1884. doi: 10.1073/pnas.57.6.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jolliffe L. K., Doyle R. J., Streips U. N. The energized membrane and cellular autolysis in Bacillus subtilis. Cell. 1981 Sep;25(3):753–763. doi: 10.1016/0092-8674(81)90183-5. [DOI] [PubMed] [Google Scholar]
  26. Kalomiris E., Bardin C., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: reactivation of membranes by freeze-thawing in the presence and absence of walls. J Bacteriol. 1982 May;150(2):535–544. doi: 10.1128/jb.150.2.535-544.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Leaver J., Hancock I. C., Baddiley J. Fractionation studies of the enzyme complex involved in teichoic acid synthesis. J Bacteriol. 1981 Jun;146(3):847–852. doi: 10.1128/jb.146.3.847-852.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mauck J., Glaser L. On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J Biol Chem. 1972 Feb 25;247(4):1180–1187. [PubMed] [Google Scholar]
  30. McCloskey M. A., Troy F. A. Paramagnetic isoprenoid carrier lipids. 2. Dispersion and dynamics in lipid membranes. Biochemistry. 1980 May 13;19(10):2061–2066. doi: 10.1021/bi00551a009. [DOI] [PubMed] [Google Scholar]
  31. McQUILLEN K., ROBERTS R. B. The utilization of acetate for synthesis in Escherichia coli. J Biol Chem. 1954 Mar;207(1):81–95. [PubMed] [Google Scholar]
  32. Mobley H. L., Doyle R. J., Streips U. N., Langemeier S. O. Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis. J Bacteriol. 1982 Apr;150(1):8–15. doi: 10.1128/jb.150.1.8-15.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Neuhaus F. C., Tobin C. E., Ahlgren J. A. Membrane-wall interrelationship in Gaffkya homari: sulfhydryl sensitivity and heat lability of nascent peptidoglycan incorporation into walls. J Bacteriol. 1980 Jul;143(1):112–119. doi: 10.1128/jb.143.1.112-119.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reynolds P. E. Peptidoglycan synthesis in bacilli. II. Characteristics of protoplast membrane preparations. Biochim Biophys Acta. 1971 May 18;237(2):255–272. doi: 10.1016/0304-4165(71)90316-3. [DOI] [PubMed] [Google Scholar]
  35. STRUVE W. G., NEUHAUS F. C. EVIDENCE FOR AN INITIAL ACCEPTOR OF UDP-NAC-MURAMYL-PENTAPEPTIDE IN THE SYNTHESIS OF BACTERIAL MUCOPEPTIDE. Biochem Biophys Res Commun. 1965 Jan 4;18:6–12. doi: 10.1016/0006-291x(65)90873-9. [DOI] [PubMed] [Google Scholar]
  36. Schrader W. P., Fan D. P. Synthesis of cross-linked peptidoglycan attached to previously formed cell wall by toluene-treated cells of Bacillus megaterium. J Biol Chem. 1974 Aug 10;249(15):4815–4818. [PubMed] [Google Scholar]
  37. Snider M. D., Sultzman L. A., Robbins P. W. Transmembrane location of oligosaccharide-lipid synthesis in microsomal vesicles. Cell. 1980 Sep;21(2):385–392. doi: 10.1016/0092-8674(80)90475-4. [DOI] [PubMed] [Google Scholar]
  38. Struve W. G., Sinha R. K., Neuhaus F. C. On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramyl-pentapeptide translocase (uridine monophosphate). Biochemistry. 1966 Jan;5(1):82–93. doi: 10.1021/bi00865a012. [DOI] [PubMed] [Google Scholar]
  39. Taku A., Stuckey M., Fan D. P. Purification of the peptidoglycan transglycosylase of Bacillus megaterium. J Biol Chem. 1982 May 10;257(9):5018–5022. [PubMed] [Google Scholar]
  40. Ward J. B. Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev. 1981 Jun;45(2):211–243. doi: 10.1128/mr.45.2.211-243.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ward J. B. Tunicamycin inhibition of bacterial wall polymer synthesis. FEBS Lett. 1977;78(1):151–154. doi: 10.1016/0014-5793(77)80294-9. [DOI] [PubMed] [Google Scholar]
  42. Watkinson R. J., Hussey H., Baddiley J. Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan. Nat New Biol. 1971 Jan 13;229(2):57–59. doi: 10.1038/newbio229057a0. [DOI] [PubMed] [Google Scholar]
  43. Weppner W. A., Neuhaus F. C. Biosynthesis of peptidoglycan. Definition of the microenvironment of undecaprenyl diphosphate-N-acetylmuramyl-(5-dimethylaminonaphthalene-1-sulfonyl) pentapeptide by fluorescence spectroscopy. J Biol Chem. 1978 Jan 25;253(2):472–478. [PubMed] [Google Scholar]
  44. Wyke A. W., Ward J. B. Biosynthesis of wall polymers in Bacillus subtilis. J Bacteriol. 1977 Jun;130(3):1055–1063. doi: 10.1128/jb.130.3.1055-1063.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wyke A. W., Ward J. B. The synthesis of covalently-linked teichoic acid and peptidoglycan by cell-free preparations of Bacillus licheniformis. Biochem Biophys Res Commun. 1975 Aug 4;65(3):877–885. doi: 10.1016/s0006-291x(75)80467-0. [DOI] [PubMed] [Google Scholar]
  46. Young F. E. Autolytic enzyme associated with cell walls of Bacillus subtilis. J Biol Chem. 1966 Aug 10;241(15):3462–3467. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES