Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Aug;155(2):872–877. doi: 10.1128/jb.155.2.872-877.1983

Megacinogenic plasmids of Bacillus megaterium.

M A Von Tersch, B C Carlton
PMCID: PMC217762  PMID: 6409886

Abstract

Megacins A-216 and A-19213 in Bacillus megaterium are plasmid encoded, as shown by analysis of cured, non-megacinogenic (Meg-) derivatives of strains 216 and ATCC 19213 and by polyethylene glycol-mediated protoplast transformation of Meg- bacteria with plasmid DNA. The results of both techniques implicated a 31-megadalton plasmid, pBM309, in megacin A-216 production and a 29-megadalton plasmid, pBM113, in megacin A-19213 production.

Full text

PDF
872

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alikhanian S. I., Ryabchenko N. F., Bukanov N. O., Sakanyan V. A. Transformation of Bacillus thuringiensis subsp. galleria protoplasts by plasmid pBC16. J Bacteriol. 1981 Apr;146(1):7–9. doi: 10.1128/jb.146.1.7-9.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernhard K., Schrempf H., Goebel W. Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol. 1978 Feb;133(2):897–903. doi: 10.1128/jb.133.2.897-903.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown B. J., Carlton B. C. Plasmid-mediated transformation in Bacillus megaterium. J Bacteriol. 1980 May;142(2):508–512. doi: 10.1128/jb.142.2.508-512.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown B. J., Von Tersch M. A., Wilson C. R., Carlton B. C. Characterization of the plasmids of Bacillus megaterium: restriction endonuclease digestions, Southern blotting analysis, and partial denaturation mapping. Plasmid. 1980 Nov;4(3):305–315. doi: 10.1016/0147-619x(80)90069-4. [DOI] [PubMed] [Google Scholar]
  5. Carlton B. C., Brown B. J. Physical mapping of a plasmid from Bacillus megaterium by restriction endonuclease cleavage. Plasmid. 1979 Jan;2(1):59–68. doi: 10.1016/0147-619x(79)90006-4. [DOI] [PubMed] [Google Scholar]
  6. Carlton B. C., Helinski D. R. Heterogeneous circular DNA elements in vegetative cultures of Bacillus megaterium. Proc Natl Acad Sci U S A. 1969 Oct;64(2):592–599. doi: 10.1073/pnas.64.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlton B. C., Smith M. P. Size distribution of the closed circular deoxyribonucleic acid molecules of Bacillus megaterium: sedimentation velocity and electron microscope measurements. J Bacteriol. 1974 Mar;117(3):1201–1209. doi: 10.1128/jb.117.3.1201-1209.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carreira L. H., Carlton B. C. Characterization of the plasmids of Bacillus megaterium: base composition and reassociation kinetics analysis. Plasmid. 1980 Nov;4(3):316–331. doi: 10.1016/0147-619x(80)90070-0. [DOI] [PubMed] [Google Scholar]
  9. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
  10. Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
  11. Fodor K., Hadlaczky G., Alföldi L. Reversion of Bacillus megaterium protoplasts to the bacillary form. J Bacteriol. 1975 Jan;121(1):390–391. doi: 10.1128/jb.121.1.390-391.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. González J. M., Jr, Carlton B. C. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid. 1980 Jan;3(1):92–98. doi: 10.1016/s0147-619x(80)90038-4. [DOI] [PubMed] [Google Scholar]
  14. González J. M., Jr, Dulmage H. T., Carlton B. C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981 May;5(3):352–365. doi: 10.1016/0147-619x(81)90010-x. [DOI] [PubMed] [Google Scholar]
  15. HOLLAND I. B., ROBERTS C. F. SOME PROPERTIES OF A NEW BACTERIOCIN FORMED BY BACILLUS MEGATERIUM. J Gen Microbiol. 1964 May;35:271–285. doi: 10.1099/00221287-35-2-271. [DOI] [PubMed] [Google Scholar]
  16. Hitchins A. D. Chromosome age and segregation during sporulation of Bacillus megaterium. Can J Microbiol. 1978 Oct;24(10):1227–1235. doi: 10.1139/m78-197. [DOI] [PubMed] [Google Scholar]
  17. IVANOVICS G., ALFOLDI L. A new antibacterial principle: megacine. Nature. 1954 Sep 4;174(4427):465–465. doi: 10.1038/174465a0. [DOI] [PubMed] [Google Scholar]
  18. IVANOVICS G., ALFOLDI L. Bacteriocinogenesis in Bacillus megaterium. J Gen Microbiol. 1957 Jun;16(3):522–530. doi: 10.1099/00221287-16-3-522. [DOI] [PubMed] [Google Scholar]
  19. IVANOVICS G., NAGY E. Hereditary aberrancy in growth of some Bacillus megaterium strains. J Gen Microbiol. 1958 Oct;19(2):407–418. doi: 10.1099/00221287-19-2-407. [DOI] [PubMed] [Google Scholar]
  20. Lovett P. S., Bramucci M. G. Plasmid deoxyribonucleic acid in Bacillus subtilis and Bacillus pumilus. J Bacteriol. 1975 Oct;124(1):484–490. doi: 10.1128/jb.124.1.484-490.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lovett P. S., Duvall E. J., Keggins K. M. Bacillus pumilus plasmid pPL10: properties and insertion into Bacillus subtilis 168 by transformation. J Bacteriol. 1976 Aug;127(2):817–828. doi: 10.1128/jb.127.2.817-828.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martin P. A., Lohr J. R., Dean D. H. Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. J Bacteriol. 1981 Feb;145(2):980–983. doi: 10.1128/jb.145.2.980-983.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Polak J., Novick R. P. Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid. 1982 Mar;7(2):152–162. doi: 10.1016/0147-619x(82)90074-9. [DOI] [PubMed] [Google Scholar]
  24. Rostås K., Dobritsa S. V., Dobritsa A. P., Koncz C., Alföldi L. Megacinogenic plasmid from Bacillus megaterium 216. Mol Gen Genet. 1980;180(2):323–329. doi: 10.1007/BF00425844. [DOI] [PubMed] [Google Scholar]
  25. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutcliffe J. G. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. doi: 10.1101/sqb.1979.043.01.013. [DOI] [PubMed] [Google Scholar]
  27. Tanaka T., Koshikawa T. Isolation and characterization of four types of plasmids from Bacillus subtilis (natto). J Bacteriol. 1977 Aug;131(2):699–701. doi: 10.1128/jb.131.2.699-701.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tikhonenko A. S., Belyaeva N. N., Ivánovics G. Electron microscopy of phages liberated by megacin A producing lysogenic Bacillus megaterium strains. Acta Microbiol Acad Sci Hung. 1975;22(1):58–59. [PubMed] [Google Scholar]
  29. Von Tersch M. A., Carlton B. C. Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol. 1983 Aug;155(2):866–871. doi: 10.1128/jb.155.2.866-871.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES