Abstract
Megacins A-216 and A-19213 in Bacillus megaterium are plasmid encoded, as shown by analysis of cured, non-megacinogenic (Meg-) derivatives of strains 216 and ATCC 19213 and by polyethylene glycol-mediated protoplast transformation of Meg- bacteria with plasmid DNA. The results of both techniques implicated a 31-megadalton plasmid, pBM309, in megacin A-216 production and a 29-megadalton plasmid, pBM113, in megacin A-19213 production.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alikhanian S. I., Ryabchenko N. F., Bukanov N. O., Sakanyan V. A. Transformation of Bacillus thuringiensis subsp. galleria protoplasts by plasmid pBC16. J Bacteriol. 1981 Apr;146(1):7–9. doi: 10.1128/jb.146.1.7-9.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhard K., Schrempf H., Goebel W. Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol. 1978 Feb;133(2):897–903. doi: 10.1128/jb.133.2.897-903.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. J., Carlton B. C. Plasmid-mediated transformation in Bacillus megaterium. J Bacteriol. 1980 May;142(2):508–512. doi: 10.1128/jb.142.2.508-512.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. J., Von Tersch M. A., Wilson C. R., Carlton B. C. Characterization of the plasmids of Bacillus megaterium: restriction endonuclease digestions, Southern blotting analysis, and partial denaturation mapping. Plasmid. 1980 Nov;4(3):305–315. doi: 10.1016/0147-619x(80)90069-4. [DOI] [PubMed] [Google Scholar]
- Carlton B. C., Brown B. J. Physical mapping of a plasmid from Bacillus megaterium by restriction endonuclease cleavage. Plasmid. 1979 Jan;2(1):59–68. doi: 10.1016/0147-619x(79)90006-4. [DOI] [PubMed] [Google Scholar]
- Carlton B. C., Helinski D. R. Heterogeneous circular DNA elements in vegetative cultures of Bacillus megaterium. Proc Natl Acad Sci U S A. 1969 Oct;64(2):592–599. doi: 10.1073/pnas.64.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlton B. C., Smith M. P. Size distribution of the closed circular deoxyribonucleic acid molecules of Bacillus megaterium: sedimentation velocity and electron microscope measurements. J Bacteriol. 1974 Mar;117(3):1201–1209. doi: 10.1128/jb.117.3.1201-1209.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carreira L. H., Carlton B. C. Characterization of the plasmids of Bacillus megaterium: base composition and reassociation kinetics analysis. Plasmid. 1980 Nov;4(3):316–331. doi: 10.1016/0147-619x(80)90070-0. [DOI] [PubMed] [Google Scholar]
- Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
- Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
- Fodor K., Hadlaczky G., Alföldi L. Reversion of Bacillus megaterium protoplasts to the bacillary form. J Bacteriol. 1975 Jan;121(1):390–391. doi: 10.1128/jb.121.1.390-391.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González J. M., Jr, Carlton B. C. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid. 1980 Jan;3(1):92–98. doi: 10.1016/s0147-619x(80)90038-4. [DOI] [PubMed] [Google Scholar]
- González J. M., Jr, Dulmage H. T., Carlton B. C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981 May;5(3):352–365. doi: 10.1016/0147-619x(81)90010-x. [DOI] [PubMed] [Google Scholar]
- HOLLAND I. B., ROBERTS C. F. SOME PROPERTIES OF A NEW BACTERIOCIN FORMED BY BACILLUS MEGATERIUM. J Gen Microbiol. 1964 May;35:271–285. doi: 10.1099/00221287-35-2-271. [DOI] [PubMed] [Google Scholar]
- Hitchins A. D. Chromosome age and segregation during sporulation of Bacillus megaterium. Can J Microbiol. 1978 Oct;24(10):1227–1235. doi: 10.1139/m78-197. [DOI] [PubMed] [Google Scholar]
- IVANOVICS G., ALFOLDI L. A new antibacterial principle: megacine. Nature. 1954 Sep 4;174(4427):465–465. doi: 10.1038/174465a0. [DOI] [PubMed] [Google Scholar]
- IVANOVICS G., ALFOLDI L. Bacteriocinogenesis in Bacillus megaterium. J Gen Microbiol. 1957 Jun;16(3):522–530. doi: 10.1099/00221287-16-3-522. [DOI] [PubMed] [Google Scholar]
- IVANOVICS G., NAGY E. Hereditary aberrancy in growth of some Bacillus megaterium strains. J Gen Microbiol. 1958 Oct;19(2):407–418. doi: 10.1099/00221287-19-2-407. [DOI] [PubMed] [Google Scholar]
- Lovett P. S., Bramucci M. G. Plasmid deoxyribonucleic acid in Bacillus subtilis and Bacillus pumilus. J Bacteriol. 1975 Oct;124(1):484–490. doi: 10.1128/jb.124.1.484-490.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovett P. S., Duvall E. J., Keggins K. M. Bacillus pumilus plasmid pPL10: properties and insertion into Bacillus subtilis 168 by transformation. J Bacteriol. 1976 Aug;127(2):817–828. doi: 10.1128/jb.127.2.817-828.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin P. A., Lohr J. R., Dean D. H. Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. J Bacteriol. 1981 Feb;145(2):980–983. doi: 10.1128/jb.145.2.980-983.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polak J., Novick R. P. Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid. 1982 Mar;7(2):152–162. doi: 10.1016/0147-619x(82)90074-9. [DOI] [PubMed] [Google Scholar]
- Rostås K., Dobritsa S. V., Dobritsa A. P., Koncz C., Alföldi L. Megacinogenic plasmid from Bacillus megaterium 216. Mol Gen Genet. 1980;180(2):323–329. doi: 10.1007/BF00425844. [DOI] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutcliffe J. G. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. doi: 10.1101/sqb.1979.043.01.013. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Koshikawa T. Isolation and characterization of four types of plasmids from Bacillus subtilis (natto). J Bacteriol. 1977 Aug;131(2):699–701. doi: 10.1128/jb.131.2.699-701.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tikhonenko A. S., Belyaeva N. N., Ivánovics G. Electron microscopy of phages liberated by megacin A producing lysogenic Bacillus megaterium strains. Acta Microbiol Acad Sci Hung. 1975;22(1):58–59. [PubMed] [Google Scholar]
- Von Tersch M. A., Carlton B. C. Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol. 1983 Aug;155(2):866–871. doi: 10.1128/jb.155.2.866-871.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]



