Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Nov;156(2):493–497. doi: 10.1128/jb.156.2.493-497.1983

Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus.

C Wright, D Kafkewitz, E W Somberg
PMCID: PMC217859  PMID: 6630144

Abstract

The effects of growth temperature on the fatty acid composition of the phospholipids of the fungus Talaromyces thermophilus were investigated. This thermophilic organism was unable to increase the degree of unsaturation of its fatty acids when shifted from high to low growth temperatures. Inhibition of fatty acid synthesis by the antibiotic cerulenin was reversed by the addition of a mixture of palmitic, stearic, and oleic acids and ergosterol. The data obtained were consistent with the hypothesis that the thermophilic character of T. thermophilus is due to metabolic limitations that restrict its ability to regulate membrane fluidity.

Full text

PDF
493

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  3. Diamond R. J., Rose A. H. Osmotic properties of spheroplasts from Saccharomyces cerevisiae grown at different temperatures. J Bacteriol. 1970 May;102(2):311–319. doi: 10.1128/jb.102.2.311-319.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Greenspan M. D., Mackow R. C. The effct of cerulenin on sterol biosynthesis in Saccharomyces cerevisiae. Lipids. 1977 Sep;12(9):729–740. doi: 10.1007/BF02570903. [DOI] [PubMed] [Google Scholar]
  6. Henry S. A. Death resulting from fatty acid starvation in yeast. J Bacteriol. 1973 Dec;116(3):1293–1303. doi: 10.1128/jb.116.3.1293-1303.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henry S. A., Fogel S. Saturated fatty acid mutants in yeast. Mol Gen Genet. 1971;113(1):1–19. doi: 10.1007/BF00335003. [DOI] [PubMed] [Google Scholar]
  8. Martin C. E., Siegel D., Aaronson L. R. Effects of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties. Biochim Biophys Acta. 1981 Sep 24;665(3):399–407. doi: 10.1016/0005-2760(81)90252-6. [DOI] [PubMed] [Google Scholar]
  9. Mumma R. O., Fergus C. L., Sekura R. D. The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids. 1970 Jan;5(1):100–103. doi: 10.1007/BF02531102. [DOI] [PubMed] [Google Scholar]
  10. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Otoguro K., Awaya J., Tanaka H., Omura S. Saturated fatty acid-starved cells of Saccharomyces cerevisiae grown in the presence of cerulenin and oleic acid. J Biochem. 1981 Feb;89(2):523–529. doi: 10.1093/oxfordjournals.jbchem.a133228. [DOI] [PubMed] [Google Scholar]
  12. Pugh E. L., Kates M. Characterization of a membrane-bound phospholipid desaturase system of candida lipolytica. Biochim Biophys Acta. 1975 Mar 24;380(3):442–453. doi: 10.1016/0005-2760(75)90112-5. [DOI] [PubMed] [Google Scholar]
  13. Quinn P. J. The fluidity of cell membranes and its regulation. Prog Biophys Mol Biol. 1981;38(1):1–104. doi: 10.1016/0079-6107(81)90011-0. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg S. L. Temperature and pH optima for 21 species of thermophilic and thermotolerant fungi. Can J Microbiol. 1975 Oct;21(10):1535–1540. doi: 10.1139/m75-225. [DOI] [PubMed] [Google Scholar]
  15. Sumner J. L., Morgan E. D., Evans H. C. The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. Can J Microbiol. 1969 Jun;15(6):515–520. doi: 10.1139/m69-089. [DOI] [PubMed] [Google Scholar]
  16. Tansey M. R., Brock T. D. The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2426–2428. doi: 10.1073/pnas.69.9.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wali A. S., Mattoo A. K., Modi V. V. Stimulation of growth and glucose catabolite enzymes by succinate in some thermophilic fungi. Arch Microbiol. 1978 Jul;118(1):49–53. doi: 10.1007/BF00406073. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES