Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Nov;156(2):567–575. doi: 10.1128/jb.156.2.567-575.1983

Bacterial formation and metabolism of 6-hydroxyhexanoate: evidence of a potential role for omega-oxidation.

D A Kunz, P J Weimer
PMCID: PMC217869  PMID: 6630146

Abstract

Alkane-utilizing strains of Pseudomonas spp. were found to omega-oxidize hexanoate, 6-hydroxyhexanoate, and 6-oxohexanoate to adipic acid in 5, 30, and 90% molar yields, respectively, after induction with n-hexane. 6-Hydroxyhexanoate was identified as the immediate product of hexanoate omega-hydroxylation by whole cells and was further oxidized into adipic acid and an unexpected metabolite identified as 2-tetrahydrofuranacetic acid. This same metabolite, together with adipic acid, was also detected when similarly induced cells were incubated with hexanoate or 1,6-hexanediol, but not with 6-oxohexanoate (adipic semialdehyde). Cells grown on hexanoate and incubated with 6-hydroxyhexanoate were also found to accumulate 2-tetrahydrofuranacetic acid, which was not further degraded. Utilization of 6-hydroxyhexanoate for growth was restricted to those organisms also able to utilize adipate. Similar observations were made with 1,6-hexanediol serving as the carbon source and cells obtained from one organism, Pseudomonas aeruginosa PAO, grown either on 1,6-hexanediol or 6-hydroxyhexanoate, were found to be well induced for both 6-oxohexanoate and adipate oxidation. The results indicate that 6-hydroxyhexanoate and 1,6-hexanediol are susceptible to both beta- and omega-oxidative attack; however, the former pathway appears to be of no physiological significance since it generates 2-tetrahydrofuranacetic acid as a nonmetabolizable intermediate, making omega-oxidation via adipate the exclusive pathway for degradation.

Full text

PDF
567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALIKHAN M. Y., HALL A. N., ROBINSON D. S. PRODUCTS OF THE OXIDATION OF SELECTED ALKANES BY A GRAM-NEGATIVE BACTERIUM. Antonie Van Leeuwenhoek. 1964;30:417–427. doi: 10.1007/BF02046755. [DOI] [PubMed] [Google Scholar]
  2. Benson S., Shapiro J. Plasmid-determined alcohol dehydrogenase activity in alkane-utilizing strains of Pseudomonas putida. J Bacteriol. 1976 May;126(2):794–798. doi: 10.1128/jb.126.2.794-798.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bochner B. R., Savageau M. A. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. doi: 10.1128/aem.33.2.434-444.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakrabarty A. M., Chou G., Gunsalus I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1137–1140. doi: 10.1073/pnas.70.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou G. I., Katz D., Gunsalus I. C. Fusion and compatibility of camphor and octane plasmids in Pseudomonas. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2675–2678. doi: 10.1073/pnas.71.7.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donoghue N. A., Trudgill P. W. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur J Biochem. 1975 Dec 1;60(1):1–7. doi: 10.1111/j.1432-1033.1975.tb20968.x. [DOI] [PubMed] [Google Scholar]
  7. Finnerty W. R., Makula R. A. Microbial lipid metabolism. CRC Crit Rev Microbiol. 1975 Oct;4(1):1–40. doi: 10.3109/10408417509105485. [DOI] [PubMed] [Google Scholar]
  8. Gibson D. T. Initial reactions in the bacterial degradation of aromatic hydrocarbons. Zentralbl Bakteriol Orig B. 1976 Jul;162(1-2):157–168. [PubMed] [Google Scholar]
  9. Grund A., Shapiro J., Fennewald M., Bacha P., Leahy J., Markbreiter K., Nieder M., Toepfer M. Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol. 1975 Aug;123(2):546–556. doi: 10.1128/jb.123.2.546-556.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holloway B. W., Krishnapillai V., Morgan A. F. Chromosomal genetics of Pseudomonas. Microbiol Rev. 1979 Mar;43(1):73–102. doi: 10.1128/mr.43.1.73-102.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jamison V. W., Raymond R. L., Hudson J. O. Microbial Hydrocarbon Co-oxidation. III. Isolation and Characterization of an alpha, alpha'-Dimethyl-cis, cis-Muconic Acid-producing Strain of Nocardia corallina. Appl Microbiol. 1969 Jun;17(6):853–856. doi: 10.1128/am.17.6.853-856.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KESTER A. S., FOSTER J. W. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA. J Bacteriol. 1963 Apr;85:859–869. doi: 10.1128/jb.85.4.859-869.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KUSUNOSE M., KUSUNOSE E., COON M. J. ENZYMATIC OMEGA-OXIDATION OF FATTY ACIDS. I. PRODUCTS OF OCTANOATE, DECONATE, AND LAURATE OXIDATION. J Biol Chem. 1964 May;239:1374–1380. [PubMed] [Google Scholar]
  14. KUSUNOSE M., KUSUNOSE E., COON M. J. ENZYMATIC OMEGA-OXIDATION OF FATTY ACIDS. II. SUBSTRATE SPECIFICITY AND OTHER PROPERTIES OF THE ENZYME SYSTEM. J Biol Chem. 1964 Jul;239:2135–2139. [PubMed] [Google Scholar]
  15. Kunz D. A., Chapman P. J. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J Bacteriol. 1981 Apr;146(1):179–191. doi: 10.1128/jb.146.1.179-191.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKenna E. J., Coon M. J. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem. 1970 Aug 10;245(15):3882–3889. [PubMed] [Google Scholar]
  17. Nieder M., Shapiro J. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacteriol. 1975 Apr;122(1):93–98. doi: 10.1128/jb.122.1.93-98.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Norris D. B., Trudgill P. W. The metabolism of cyclohexanol by Nocardia globerula CL1. Biochem J. 1971 Feb;121(3):363–370. doi: 10.1042/bj1210363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ornston L. N., Ornston M. K., Chou G. Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem Biophys Res Commun. 1969 Jul 7;36(1):179–184. doi: 10.1016/0006-291x(69)90666-4. [DOI] [PubMed] [Google Scholar]
  20. Ribbons D. W. Metabolism of omicron-cresol by Pseudomonas aeruginosa strain T1. J Gen Microbiol. 1966 Aug;44(2):221–231. doi: 10.1099/00221287-44-2-221. [DOI] [PubMed] [Google Scholar]
  21. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  22. THIJSSE G. J. FATTY-ACID ACCUMULATION BY ACRYLATE INHIBITION OF BETA-OXIDATION IN ALKANE-OXIDIZING PSEUDOMONAS. Biochim Biophys Acta. 1964 Apr 20;84:195–197. doi: 10.1016/0926-6542(64)90078-2. [DOI] [PubMed] [Google Scholar]
  23. Worsey M. J., Williams P. A. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol. 1975 Oct;124(1):7–13. doi: 10.1128/jb.124.1.7-13.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van der Linden A. C., Thijsse G. J. The mechanisms of microbial oxidations of petroleum hydrocarbons. Adv Enzymol Relat Areas Mol Biol. 1965;27:469–546. doi: 10.1002/9780470122723.ch10. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES