Abstract
Mutants carrying defects in cysteine synthase A or B or both were isolated from Salmonella typhimurium LT2. Parent strains were able to grow on minimal media containing sulfate, sulfite, sulfide, or thiosulfate as sulfur sources. Mutants lacking cysteine synthase B were unable to grow on thiosulfate, whereas mutants lacking cysteine synthase A grew on the four inorganic sulfur sources described above with little difference in their growth rates. Mutants lacking both cysteine synthases failed to grow on media containing any of the inorganic sulfur sources tested. Purification of cysteine synthase B resulted in the copurification of S-sulfocysteine synthase. In addition, the two activities were also cotransduced. These activities appear to be associated with the cysM gene, and this is able to be cotransducted with the cysK gene at a high frequency. From these results, it may be concluded that thiosulfate is assimilated via S-sulfocysteine exclusively with the aid of S-sulfocysteine synthase.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker M. A., Tomkins G. M. Pleiotrophy in a cysteine-requiring mutant of Samonella typhimurium resulting from altered protein-protein interaction. J Biol Chem. 1969 Nov 10;244(21):6023–6030. [PubMed] [Google Scholar]
- Chambers L. A., Trudinger P. A. Cysteine and S-sulphocysteine biosynthesis in bacteria. Arch Mikrobiol. 1971;77(2):165–184. doi: 10.1007/BF00408609. [DOI] [PubMed] [Google Scholar]
- Hensel G., Trüper H. G. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria. Arch Microbiol. 1976 Aug;109(1-2):101–103. doi: 10.1007/BF00425119. [DOI] [PubMed] [Google Scholar]
- Hulanicka D., Klopotowski T. Mutants of Salmonella typhimurium resistant to triazole. Acta Biochim Pol. 1972;19(3):251–260. [PubMed] [Google Scholar]
- Hulanicka M. D., Hallquist S. G., Kredich N. M., Mojica-A T. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol. 1979 Oct;140(1):141–146. doi: 10.1128/jb.140.1.141-146.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulanicka M. D., Kredich N. M., Treiman D. M. The structural gene for O-acetylserine sulfhydrylase A in Salmonella typhimurium. Identity with the trzA locus. J Biol Chem. 1974 Feb 10;249(3):867–872. [PubMed] [Google Scholar]
- KAJI A., McELROY W. D. Mechanism of hydrogen sulfide formation from thiosulfate. J Bacteriol. 1959 May;77(5):630–637. doi: 10.1128/jb.77.5.630-637.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kredich N. M., Becker M. A., Tomkins G. M. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem. 1969 May 10;244(9):2428–2439. [PubMed] [Google Scholar]
- Kredich N. M., Foote L. J., Hulanicka M. D. Studies on the mechanism of inhibition of Salmonella typhimurium by 1,2,4-triazole. J Biol Chem. 1975 Sep 25;250(18):7324–7331. [PubMed] [Google Scholar]
- Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
- LEINWEBER F. J., MONTY K. J. THE METABOLISM OF THIOSULFATE IN SALMONELLA TYPHIMURIUM. J Biol Chem. 1963 Nov;238:3775–3780. [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- NAKAMURA T., SATO R. Synthesis from sulphate and accumulation of S-sulphocysteine by a mutant strain of Aspergillus nidulans. Biochem J. 1963 Feb;86:328–335. doi: 10.1042/bj0860328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAMURA T., SATO R. [ASSIMILILATION OF INORGANIC SULFATE BY MICROORGANISMS]. Seikagaku. 1965 Jan;37:1–13. [PubMed] [Google Scholar]
- Qureshi M. A., Smith D. A., Kingsman A. J. Mutants of Salmonella typhimurium responding to cysteine or methionine: their nature and possible role in the regulation of cysteine biosynthesis. J Gen Microbiol. 1975 Aug;89(2):353–370. doi: 10.1099/00221287-89-2-353. [DOI] [PubMed] [Google Scholar]
- SORBO B. A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta. 1957 Feb;23(2):412–416. doi: 10.1016/0006-3002(57)90346-3. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt A. Sulfate reduction in a cell-free system of Chlorella. The ferredoxin dependent reduction of a protein-bound intermediate by a thiosulfonate reductase. Arch Mikrobiol. 1973 Oct 4;93(1):29–52. [PubMed] [Google Scholar]
- VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
- Villarejo M., Westley J. Sulfur metabolism of Bacillus subtilis. Biochim Biophys Acta. 1966 Mar 28;117(1):209–216. doi: 10.1016/0304-4165(66)90168-1. [DOI] [PubMed] [Google Scholar]
- Wiebers J. L., Garner H. R. Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast, and Escherichia coli. J Biol Chem. 1967 Dec 10;242(23):5644–5649. [PubMed] [Google Scholar]
- Winell M., Mannervik B. The nature of the enzymatic reduction of S-sulfoglutathione in liver and peas. Biochim Biophys Acta. 1969 Jul 30;184(2):374–380. doi: 10.1016/0304-4165(69)90040-3. [DOI] [PubMed] [Google Scholar]
- Woodin T. S., Segel I. H. Glutathione reductase-dependent metabolism of cysteine-S-sulfate by Penicillium chrysogenum. Biochim Biophys Acta. 1968 Aug 27;167(1):78–88. doi: 10.1016/0005-2744(68)90278-7. [DOI] [PubMed] [Google Scholar]
