Abstract
DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean D. H., Orrego J. C., Hutchison K. W., Halvorson H. O. New temperate bacteriophage for Bacillus subtilis, rho 11. J Virol. 1976 Nov;20(2):509–519. doi: 10.1128/jvi.20.2.509-519.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flock J. I., Rutberg L. Mature DNA from temperate bacillusphage phi105 requires primary recombination to be infectious in transfection. Mol Gen Genet. 1974;131(4):301–311. doi: 10.1007/BF00264861. [DOI] [PubMed] [Google Scholar]
- Flock J. I. Transfection with replicating DNA from the temperate Bacillus bacteriophage phi 105 and with T4-ligase treated phi105 DNA: the importance in transfection of being longer than genome-length. Mol Gen Genet. 1978 Jul 6;163(1):7–15. doi: 10.1007/BF00268958. [DOI] [PubMed] [Google Scholar]
- Kroyer J. M., Perkins J. B., Rudinski M. S., Dean D. H. Physical mapping of Bacillus subtilis phage rho14 cloning vehicles: heteroduplex and restriction enzyme analyses. Mol Gen Genet. 1980 Feb;177(3):511–517. doi: 10.1007/BF00271491. [DOI] [PubMed] [Google Scholar]
- Lévi-Meyrueis C., Fodor K., Schaeffer P. Polyethyleneglycol-induced transformation of Bacillus subtilis protoplasts by bacterial chromosomal DNA. Mol Gen Genet. 1980;179(3):589–594. doi: 10.1007/BF00271749. [DOI] [PubMed] [Google Scholar]
- Perkins J. B., Zarley C. D., Dean D. H. Restriction endonuclease mapping of bacteriophage phi105 and closely related temperate Bacillus subtilis bacteriophages rho10 and rho14. J Virol. 1978 Oct;28(1):403–407. doi: 10.1128/jvi.28.1.403-407.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudinski M. S., Dean D. H. Evolutionary considerations of related Bacillus subtilis temperate phages phi 105, rho 14, rho 10, and rho 6 as revealed by heteroduplex analysis. Virology. 1979 Nov;99(1):57–65. doi: 10.1016/0042-6822(79)90036-9. [DOI] [PubMed] [Google Scholar]
- Rutberg L., Hoch J. A., Spizizen J. Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage phi-105. J Virol. 1969 Jul;4(1):50–57. doi: 10.1128/jvi.4.1.50-57.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spatz H. C., Trautner T. A. The role of recombination in transfection of B. subtilis. Mol Gen Genet. 1971;113(2):174–190. doi: 10.1007/BF00333191. [DOI] [PubMed] [Google Scholar]
- Stahly D. P., Ito J. Transfection of protoplasts of Bacillus subtilis with phi 29 DNA. Mol Gen Genet. 1981;182(1):180–182. doi: 10.1007/BF00422788. [DOI] [PubMed] [Google Scholar]
- Trautner T. A., Spatz H. C. Transfection in B. subtilis. Curr Top Microbiol Immunol. 1973;62:61–88. doi: 10.1007/978-3-642-65772-6_3. [DOI] [PubMed] [Google Scholar]
- White T. B., Doyle R. J., Streips U. N. Transformation of a Bacillus subtilis L-form with bacteriophage deoxyribonucleic acid. J Bacteriol. 1981 Feb;145(2):878–883. doi: 10.1128/jb.145.2.878-883.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vos W. M., Venema G. Fate of plasmid DNA in transformation of Bacillus subtilis protoplasts. Mol Gen Genet. 1981;182(1):39–43. doi: 10.1007/BF00422764. [DOI] [PubMed] [Google Scholar]
