Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Dec;156(3):1158–1164. doi: 10.1128/jb.156.3.1158-1164.1983

Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria.

G L Murphy, J J Perry
PMCID: PMC217962  PMID: 6643390

Abstract

The cellular fatty acid composition of Mycobacterium vaccae JOB5 and Mycobacterium convolutum R22 was examined after growth on n-alkanes and compared with the fatty acids of the organisms after growth on 1-chlorohexadecane and 1-chlorooctadecane. Growth on n-alkanes resulted in normal fatty acid profiles. Mass spectral analyses indicated that, after growth on the terminally chlorinated n-alkanes, 75 to 86% of the fatty acids in M. convolutum and ca. 55% of the fatty acids in M. vaccae contained chlorine. Neither organism could utilize chloroacetate or 3-chloropropionate as sole source of carbon and energy. When these compounds were added to a growth medium with n-hexadecane as substrate, there was no evidence that chlorinated fatty acids were produced. Terminally chlorinated n-alkanes can be added to the list of n-alkanes, alkenes, and cyclohexylalkane derivatives that can be directly incorporated into cellular fatty acids of hydrocarbon-utilizing organisms.

Full text

PDF
1158

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascenzi J. M., Vestal J. R. Regulation of fatty acid biosynthesis by hydrocarbon substrates in Mycobacterium convolutum. J Bacteriol. 1979 Jan;137(1):384–390. doi: 10.1128/jb.137.1.384-390.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beam H. W., Perry J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol. 1974 May;118(2):394–399. doi: 10.1128/jb.118.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blevins W. T., Perry J. J. Metabolism of Propane, n-Propylamine, and Propionate by Hydrocarbon-Utilizing Bacteria. J Bacteriol. 1972 Oct;112(1):513–518. doi: 10.1128/jb.112.1.513-518.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cerniglia C. E., Perry J. J. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing filamentous fungi. J Bacteriol. 1974 Jun;118(3):844–847. doi: 10.1128/jb.118.3.844-847.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunlap K. R., Perry J. J. Effect of Substrate on the Fatty Acid Composition of Hydrocarbon- and Ketone-utilizing Microorganisms. J Bacteriol. 1968 Aug;96(2):318–321. doi: 10.1128/jb.96.2.318-321.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. J Bacteriol. 1967 Dec;94(6):1919–1923. doi: 10.1128/jb.94.6.1919-1923.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iida M., Kobayashi H., Iizuka H. Cellular fatty acids derived from normal alkanes by Candida rugosa. Z Allg Mikrobiol. 1980;20(7):449–457. doi: 10.1002/jobm.3630200704. [DOI] [PubMed] [Google Scholar]
  8. JAMES A. T. Qualitative and quantitative determination of the fatty acids by gas-liquid chromatography. Methods Biochem Anal. 1960;8:1–59. doi: 10.1002/9780470110249.ch1. [DOI] [PubMed] [Google Scholar]
  9. King D. H., Perry J. J. Characterization of branched and unsaturated fatty acids in Mycobacterium vaccae strain JOB5. Can J Microbiol. 1975 Apr;21(4):510–512. doi: 10.1139/m75-072. [DOI] [PubMed] [Google Scholar]
  10. King D. H., Perry J. J. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae. Can J Microbiol. 1975 Jan;21(1):85–89. doi: 10.1139/m75-012. [DOI] [PubMed] [Google Scholar]
  11. LEADBETTER E. R., FOSTER J. W. Studies on some methane-utilizing bacteria. Arch Mikrobiol. 1958;30(1):91–118. doi: 10.1007/BF00509229. [DOI] [PubMed] [Google Scholar]
  12. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J Bacteriol. 1968 Jun;95(6):2102–2107. doi: 10.1128/jb.95.6.2102-2107.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes. J Bacteriol. 1968 Jun;95(6):2108–2111. doi: 10.1128/jb.95.6.2108-2111.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. OOYAMA J., FOSTER J. W. BACTERIAL OXIDATION OF CYCLOPARAFFINIC HYDROCARBONS. Antonie Van Leeuwenhoek. 1965;31:45–65. doi: 10.1007/BF02045875. [DOI] [PubMed] [Google Scholar]
  15. Patrick M. A., Dugan P. R. Influence of hydrocarbons and derivatives on the polar lipid fatty acids of an Acinetobacter isolate. J Bacteriol. 1974 Jul;119(1):76–81. doi: 10.1128/jb.119.1.76-81.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vestal J. R., Perry J. J. Effect of substrate on the lipids of the hydrocarbon-utilizing Mycobacterium vaccae. Can J Microbiol. 1971 Apr;17(4):445–449. doi: 10.1139/m71-075. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES