Abstract
A dietary depletion of magnesium in rats leads to the production in the thin limb of Henle's loop of the nephrons of spherical microliths composed of a matrix of PAS-positive substances and calcium phosphate (3). These microliths grow by accretion to form intranephronic calculi. The classical pathological syndrome of clinical nephrolithiasis is thus reproduced within the nephron; to wit, the origin of the calculus at a certain level, local traumatic damage at the site of its origin, passage with the fluid flow down the urinary passages, lodgment of the calculus at some restricting point, obstruction of fluid flow and the usual consequent localized intrarenal "hydronephrotic" alterations of regressive atrophic cellular dysplasias within the nephron. To the classical description of the two forms of urinary lithiases occurring in the bladder and in the renal pelvis must therefore be added a third form, intranephronic calculosis. From the first origin of a microlith to its ultimate form as a calculus its organized structure is characterized by its matrix (PAS-positive materials) in which the periodic precipitation of crystalline mineral (Ca++, PO3 ---) occurs in a pattern simulating Liesegang rings.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALCOCK N., MACINTYRE I. Inter-relation of calcium and magnesium absorption. Clin Sci. 1962 Apr;22:185–193. [PubMed] [Google Scholar]
- BOYCE W. H., GARVEY F. K. The amount and nature of the organic matrix in urinary calculi: a review. J Urol. 1956 Sep;76(3):213–227. doi: 10.1016/S0022-5347(17)66686-2. [DOI] [PubMed] [Google Scholar]
- BOYCE W. H., SULKIN N. M. Biocolloids of urine in health and in calculous disease. III. The mucoprotein matrix of urinary calculi. J Clin Invest. 1956 Oct;35(10):1067–1079. doi: 10.1172/JCI103361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAHL L. K. A simple and sensitive histochemical method for calcium. Proc Soc Exp Biol Med. 1952 Jul;80(3):474–479. doi: 10.3181/00379727-80-19661. [DOI] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., LASSITER W. E., MYLLE M. Localization of urine acidification in the mammalian kidney. Am J Physiol. 1960 Mar;198:581–585. doi: 10.1152/ajplegacy.1960.198.3.581. [DOI] [PubMed] [Google Scholar]
- HESS R., MACINTYRE I., ALCOCK N., PEARSE A. G. Histochemical changes in rat kidney in magnesium deprivation. Br J Exp Pathol. 1959 Feb;40(1):80–86. [PMC free article] [PubMed] [Google Scholar]
- HOLLIDAY M. A., BRIGHT N. H., SCHULZ D., OLIVER J. The renal lesions of electrolyte imbalance. III. The effect of acute chloride depletion and alkalosis on the renal cortex. J Exp Med. 1961 Jun 1;113:971–980. doi: 10.1084/jem.113.6.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLIDAY M. A., WINTERS R. W., WELT L. G., MACDOWELL M., OLIVER J. The renal lesions of electrolyte imbalance. II. The combined effect on renal architecture of phosphate loading and potassium depletion. J Exp Med. 1959 Aug 1;110(2):161–168. doi: 10.1084/jem.110.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KO K. W., FELLERS F. X., CRAIG J. M. Observations on magnesium deficiency in the rat. Lab Invest. 1962 Apr;11:294–305. [PubMed] [Google Scholar]
- Mackay E. M., Oliver J. RENAL DAMAGE FOLLOWING THE INGESTION OF A DIET CONTAINING AN EXCESS OF INORGANIC PHOSPHATE. J Exp Med. 1935 Feb 28;61(3):319–334. doi: 10.1084/jem.61.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLIVER J., MACDOWELL M., WELT L. G., HOLLIDAY M. A., HOLLANDER W., Jr, WINTERS R. W., WILLIAMS T. F., SEGAR W. E. The renal lesions of electrolyte imbalance. I. The structural alterations in potassium-depleted rats. J Exp Med. 1957 Oct 1;106(4):563–574. doi: 10.1084/jem.106.4.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLIVER J., MacDOWELL M., TRACY A. The pathogenesis of acute renal failure associated with traumatic and toxic injury; renal ischemia, nephrotoxic damage and the ischemic episode. J Clin Invest. 1951 Dec;30(121):1307–1439. doi: 10.1172/JCI102550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver J. A FURTHER STUDY OF THE REGENERATED EPITHELIUM IN CHRONIC URANIUM NEPHRITIS. AN ANATOMICAL INVESTIGATION OF ITS FUNCTION. J Exp Med. 1916 Mar 1;23(3):301–321. doi: 10.1084/jem.23.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall A. THE ORIGIN AND GROWTH OF RENAL CALCULI. Ann Surg. 1937 Jun;105(6):1009–1027. doi: 10.1097/00000658-193706000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SABOUR M. S., HANNA S., MACDONALD M. K. THE NEPHROPATHY OF EXPERIMENTAL MAGNESIUM DEFICIENCY. AN ELECTRON MICROSCOPIC STUDY. Q J Exp Physiol Cogn Med Sci. 1964 Jul;49:314–323. doi: 10.1113/expphysiol.1964.sp001737. [DOI] [PubMed] [Google Scholar]
- SCHNEEBERGER E. E., MORRISON A. B. THE NEPHROPATHY OF EXPERIMENTAL MAGNESIUM DEFICIENCY: LIGHT AND ELECTRON MICROSCOPIC INVESTIGATIONS. Lab Invest. 1965 Jun;14:674–686. [PubMed] [Google Scholar]
- SPARGO B. Kidney changes in hypokalemic alkalosis in the rat. J Lab Clin Med. 1954 May;43(5):802–814. [PubMed] [Google Scholar]
- VERMEULEN C. W., LYON E. S., MILLER G. H. Calcium phosphate solubility in urine as measured by a precipitation test; experimental urolithiasis. XIII. J Urol. 1958 Mar;79(3):596–606. doi: 10.1016/S0022-5347(17)66313-4. [DOI] [PubMed] [Google Scholar]
- WHANG R., WELT L. G. Observations in experimental magnesium depletion. J Clin Invest. 1963 Mar;42:305–313. doi: 10.1172/JCI104717. [DOI] [PMC free article] [PubMed] [Google Scholar]