Abstract
The present study was designed to devise and characterize an indirect or sandwich radioimmunolabeling technique for the study of lymphocyte surface receptors of immunoglobulin nature. Mouse lymphocytes from various sources were treated by the method of Shortman et al. to remove debris and damaged cells. This was an important preliminary step, as without it, little meaning could be attached to bulk scintillation counting of labeled cell suspensions, in view of the marked tendency of dead or damaged cells to adsorb protein nonspecifically. Next, cells were reacted at 0°C for 30 min with graded dilutions of unlabeled rabbit antisera against defined mouse Ig chains. After washing, the cells were reacted with a sheep anti-rabbit globulin reagent labeled with 125I, again at graded concentrations. After further washing, lymphocyte labeling was quantitated by both bulk scintillation counting and radioautography. Conditions were defined in which nonthymus-derived cells (B cells) but not thymus-derived cells (T cells) could be labeled. Most B cells displayed κ- and µ-chains on their surface, but some also displayed α- and γ2-chains, though in smaller amounts. When the concentration of both the first and the second reagents were raised considerably, conditions were defined under which virtually all T cells could be labeled by polyvalent antiglobulin sera, anti-κ sera, or, with more difficulty, by anti-µ sera. A large series of control experiments confirmed the serologic specificity of this labeling. It was shown that under equivalent conditions, B cells bind 100–400 times more antiglobulin than do T cells. The theoretical implications of the results are briefly discussed. It is argued that the sandwich approach offers certain technical advantages over direct labeling procedures for further analyses of T cell receptors and for studies of receptor metabolism.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ada G. L., Byrt P. Specific inactivation of antigen-reactive cells with 125I-labelled antigen. Nature. 1969 Jun 28;222(5200):1291–1292. doi: 10.1038/2221291a0. [DOI] [PubMed] [Google Scholar]
- BOAK J. L., WOODRUFF M. F. A MODIFIED TECHNIQUE FOR COLLECTING MOUSE THORACIC DUCT LYMPH. Nature. 1965 Jan 23;205:396–397. doi: 10.1038/205396a0. [DOI] [PubMed] [Google Scholar]
- Bankhurst A. D., Warner N. L., Sprent J. Surface immunoglobulins on thymus and thymus-derived lymphoid cells. J Exp Med. 1971 Oct 1;134(4):1005–1015. doi: 10.1084/jem.134.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bankhurst A. D., Warner N. L. Surface immunoglobulins on mouse lymphoid cells. J Immunol. 1971 Aug;107(2):368–373. [PubMed] [Google Scholar]
- Basten A., Miller J. F., Warner N. L., Pye J. Specific inactivation of thymus-derived (T) and non-thymus-derived (B) lymphocytes by 125I-labelled antigen. Nat New Biol. 1971 May 26;231(21):104–106. doi: 10.1038/newbio231104a0. [DOI] [PubMed] [Google Scholar]
- Cheers C., Breitner J. C., Little M., Miller J. F. Cooperation between carrier-reactive and hapten-sensitive cells in vitro. Nat New Biol. 1971 Aug 25;232(34):248–250. doi: 10.1038/newbio232248a0. [DOI] [PubMed] [Google Scholar]
- Coombs R. R., Gurner B. W., Janeway C. A., Jr, Wilson A. B., Gell P. G., Kelus A. S. Immunoglobulin determinants on the lymphocytes of normal rabbits. I. Demonstration by the mixed antiglobulin reaction of determinants recognized by anti-gamma, anti-mu, anti-Fab and anti-allotype sera, anti-As4 and anti-As6. Immunology. 1970 Mar;18(3):417–429. [PMC free article] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greaves M. F. Biological effects of anti-immunoglobulins: evidence for immunoglobulin receptors on 'T' and 'B' lymphocytes. Transplant Rev. 1970;5:45–75. doi: 10.1111/j.1600-065x.1970.tb00356.x. [DOI] [PubMed] [Google Scholar]
- Mason S., Warner N. L. The immunoglobulin nature of the antigen recognition site on cells mediating transplantation immunity and delayed hypersentivity. J Immunol. 1970 Mar;104(3):762–765. [PubMed] [Google Scholar]
- Najjar V. A. The physiological role of the lymphoid system. Lymphology. 1970 Mar;3(1):23–31. [PubMed] [Google Scholar]
- Nossal G. J., Lewis H., Warner N. L. Differential sensitivity of haemolytic plaque methods at various stages of the immune response. Cell Immunol. 1971 Feb;2(1):13–40. doi: 10.1016/0008-8749(71)90023-2. [DOI] [PubMed] [Google Scholar]
- Pernis B., Forni L., Amante L. Immunoglobulin spots on the surface of rabbit lymphocytes. J Exp Med. 1970 Nov;132(5):1001–1018. doi: 10.1084/jem.132.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabellino E., Colon S., Grey H. M., Unanue E. R. Immunoglobulins on the surface of lymphocytes. I. Distribution and quantitation. J Exp Med. 1971 Jan 1;133(1):156–167. doi: 10.1084/jem.133.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff M. C., Sternberg M., Taylor R. B. Immunoglobulin determinants on the surface of mouse lymphoid cells. Nature. 1970 Feb 7;225(5232):553–554. doi: 10.1038/225553a0. [DOI] [PubMed] [Google Scholar]
- Raff M. C. Two distinct populations of peripheral lymphocytes in mice distinguishable by immunofluorescence. Immunology. 1970 Oct;19(4):637–650. [PMC free article] [PubMed] [Google Scholar]
- Sell S. Studies on rabbit lymphocytes in vitro. VI. The induction of blast transformation with sheep antisera to rabbit IgA and IgM. J Exp Med. 1967 Mar 1;125(3):393–400. doi: 10.1084/jem.125.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wigzell H., Andersson B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J Exp Med. 1969 Jan 1;129(1):23–36. doi: 10.1084/jem.129.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. D. Immunoglobulin determinants on rosette-forming cells: their changing nature during an immune response. Aust J Exp Biol Med Sci. 1971 Aug;49(4):415–419. doi: 10.1038/icb.1971.43. [DOI] [PubMed] [Google Scholar]