Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1977 Apr 1;145(4):802–818. doi: 10.1084/jem.145.4.802

Secondary in vitro responses of T lymphocytes to non-H-2 alloantigens self-H-2-restricted responses induced in heterologous serum are not dependent on primary-stimulating non-H-2 alloantigens

PMCID: PMC2180642  PMID: 300775

Abstract

The role of non-H-2 alloantigens, specifically Mls locus products, in secondary in vitro T-cell-mediated cytotoxicity has been studied. Splenic T lymphocytes, activated against Mls locus alloantigens in primary-mixed cultures and isolated by velocity sedimentation gradient separation techniques, were used as responding populations in secondary mixed leukocyte cultures (MLCs) and cell-mediated lympholysis (CML). Such T-cell clones could be shown to exhibit either "self"-H-2- restricted or anti-Mls locus-specific reactivity, with this dichotomy of reactivity depending only on the primary culture conditions. Mls locus-activated T lymphocytes generated in cultures supplemented with homologous serum exhibited specific memory responses in MLC, yet remained incapable of effecting target cell destruction against Mls locus antigens or against "self"-H-2-structures in CML. In contrast, activated T-cell clones generated in the presence of heterologous serum displayed H-2-restricted reactivity in both secondary MLC and CML. H-2- restricted MLC activation was controlled by products of the H-2 serologically defined regions. Although heterologous serum was a necessary (and sufficient) entity for development of H-2-restricted responses, evidence argues against the possibility that heterologous serum acts via modification of cell surface components.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbasi K., Démant P., Festenstein H., Holmes J., Huber B., Rychiková M. Mouse mixed lymphocyte reactions and cell-mediated lympholysis: genetic control and relevance to antigenic strength. Transplant Proc. 1973 Dec;5(4):1329–1337. [PubMed] [Google Scholar]
  2. Alter B. J., Schendel D. J., Bach M. L., Bach F. H., Klein J., Stimpfling J. H. Cell-mediated lympholysis. Importance of serologically defined H-2 regions. J Exp Med. 1973 May 1;137(5):1303–1309. doi: 10.1084/jem.137.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson L. C., Häyry P. Clonal isolation of alloantigen-reactive T-cells and characterization of their memory functions. Transplant Rev. 1975;25:121–162. doi: 10.1111/j.1600-065x.1975.tb00728.x. [DOI] [PubMed] [Google Scholar]
  4. Andersson L. C., Häyry P. Specific priming of mouse thymus-dependent lymphocytes to allogeneic cells in vitro. Eur J Immunol. 1973 Sep;3(9):595–599. doi: 10.1002/eji.1830030913. [DOI] [PubMed] [Google Scholar]
  5. Bach F. H., Widmer M. B., Bach M. L., Klein J. Serologically defined and lymphocyte-defined components of the major histocompatibility complex in the mouse. J Exp Med. 1972 Dec 1;136(6):1430–1444. doi: 10.1084/jem.136.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bevan M. J. Interaction antigens detected by cytotoxic T cells with the major histocompatibility complex as modifier. Nature. 1975 Jul 31;256(5516):419–421. doi: 10.1038/256419a0. [DOI] [PubMed] [Google Scholar]
  7. Bevan M. J. The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med. 1975 Dec 1;142(6):1349–1364. doi: 10.1084/jem.142.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blanden R. V., Doherty P. C., Dunlop M. B., Gardner I. D., Zinkernagel R. M., David C. S. Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature. 1975 Mar 20;254(5497):269–270. doi: 10.1038/254269a0. [DOI] [PubMed] [Google Scholar]
  9. Click R. E., Benck L., Alter B. J. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell Immunol. 1972 Feb;3(2):264–276. doi: 10.1016/0008-8749(72)90165-7. [DOI] [PubMed] [Google Scholar]
  10. Doherty P. C., Zinkernagel R. M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19(0):89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  11. Forni G., Green I. Heterologous sera: a target for in vitro cell-mediated cytotoxicity. J Immunol. 1976 Jun;116(6):1561–1565. [PubMed] [Google Scholar]
  12. Gordon R. D., Simpson E., Samelson L. E. In vitro cell-mediated immune responses to the male specific(H-Y) antigen in mice. J Exp Med. 1975 Nov 1;142(5):1108–1120. doi: 10.1084/jem.142.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirsch M. S., Phillips S. M., Solnik C., Black P. H., Schwartz R. S., Carpenter C. B. Activation of leukemia viruses by graft-versus-host and mixed lymphocyte reactions in vitro. Proc Natl Acad Sci U S A. 1972 May;69(5):1069–1072. doi: 10.1073/pnas.69.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Häyry P., Andersson L. C. Generation of T memory cells in one-way mixed lymphocyte culture. II. Anamnestic responses of "secondary" lymphocytes. Scand J Immunol. 1974;3(6):823–832. doi: 10.1111/j.1365-3083.1974.tb01318.x. [DOI] [PubMed] [Google Scholar]
  15. Katz-Heber E., Peck A. B., Click R. E. Immune responses in vitro. II. Mixed leukocyte interaction in a protein-free medium. Eur J Immunol. 1973 Jul;3(7):379–385. doi: 10.1002/eji.1830030702. [DOI] [PubMed] [Google Scholar]
  16. Katz D. H., Benacerraf B. The function and interrelationships of T-cell receptors, Ir genes and other histocompatibility gene products. Transplant Rev. 1975;22:175–195. doi: 10.1111/j.1600-065x.1975.tb01559.x. [DOI] [PubMed] [Google Scholar]
  17. Koszinowski U., Thomssen R. Target cell-dependent T cell-mediated lysis of vaccinia virus-infected cells. Eur J Immunol. 1975 Apr;5(4):245–251. doi: 10.1002/eji.1830050405. [DOI] [PubMed] [Google Scholar]
  18. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  19. Nabholz M., Vives J., Young H. M., Meo T., Miggiano V., Rijnbeek A., Shreffler D. C. Cell-mediated cell lysis in vitro: genetic control of killer cell production and target specificities in the mouse. Eur J Immunol. 1974 May;4(5):378–387. doi: 10.1002/eji.1830040514. [DOI] [PubMed] [Google Scholar]
  20. Niederhuber J. E., Möller E. Antigenic markers on mouse lymphoid cells: the presence of MBLA on antibody forming cells and antigen binding cells. Cell Immunol. 1972 Apr;3(4):559–568. doi: 10.1016/0008-8749(72)90119-0. [DOI] [PubMed] [Google Scholar]
  21. Olding L. B., Jensen F. C., Oldstone M. B. Pathogenesis of of cytomegalovirus infection. I. Activation of virus from bone marrow-derived lymphocytes by in vitro allogenic reaction. J Exp Med. 1975 Mar 1;141(3):561–572. doi: 10.1084/jem.141.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peck A. B., Alter B. J., Lindahl K. F. Specificity in T cell mediated lympholysis: identical genetic control of the proliferative and effector phases of allogeneic and xenogeneic reactions. Transplant Rev. 1976;29:189–221. doi: 10.1111/j.1600-065x.1976.tb00202.x. [DOI] [PubMed] [Google Scholar]
  23. Peck A. B., Bach F. H. A miniaturized mouse mixed leukocyte culture in serum-free and mouse serum supplemented media. J Immunol Methods. 1973 Oct;3(2):147–163. doi: 10.1016/0022-1759(73)90030-6. [DOI] [PubMed] [Google Scholar]
  24. Peck A. B., Bach F. H. Mouse cell-mediated lympholysis assay in serum-free and mouse serum-supplemented media: culture conditions and genetic factors. Scand J Immunol. 1975;4(1):53–62. doi: 10.1111/j.1365-3083.1975.tb02599.x. [DOI] [PubMed] [Google Scholar]
  25. Peck A. B., Click R. E. Immune responses in vitro. 3. Enhancement of the mouse mixed lymphocyte interaction by isologous and homologous sera. Eur J Immunol. 1973 Jul;3(7):385–392. doi: 10.1002/eji.1830030703. [DOI] [PubMed] [Google Scholar]
  26. Phillips S. M., Gleichmann H., Hirsch M. S., Black P., Merrill J. P., Schwartz R. S., Carpenter C. B. Cellular immunity in the mouse. IV. Altered thymic-dependent lymphocyte reactivity in the chronic graft vs host reaction and leukemia virus activation. Cell Immunol. 1975 Jan;15(1):152–168. doi: 10.1016/0008-8749(75)90172-0. [DOI] [PubMed] [Google Scholar]
  27. Rehn T. G., Shearer G. M., Koren H. S., Inman J. K. Cell-mediated lympholysis of N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-beta-anaylglycylglycyl-modified autologous lymphocytes. Effector cell specificity to modified cell surface components controlled by the H-2K and H-2D serological regions of the murine major histocompatibility complex. J Exp Med. 1976 Jan 1;143(1):127–142. doi: 10.1084/jem.143.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Röllinghoff M., Pfizenmeier K., Trostmann H., Wagner H. T cell proliferation in the mixed lymphocyte culture does not necessarily result in the generation of cytotoxic T effector cells. Eur J Immunol. 1975 Aug;5(8):560–564. doi: 10.1002/eji.1830050811. [DOI] [PubMed] [Google Scholar]
  29. Shearer G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur J Immunol. 1974 Aug;4(8):527–533. doi: 10.1002/eji.1830040802. [DOI] [PubMed] [Google Scholar]
  30. Shreffler D. C., David C. S. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 1975;20:125–195. doi: 10.1016/s0065-2776(08)60208-4. [DOI] [PubMed] [Google Scholar]
  31. Shustik C., Cohen I. R., Schwartz R. S., Latham-Griffin E., Waksal S. D. T lymphocytes with promiscuous cytotoxicity. Nature. 1976 Oct 21;263(5579):699–701. doi: 10.1038/263699a0. [DOI] [PubMed] [Google Scholar]
  32. Wigzell H., Sundqvist K. G., Yoshida T. O. Separation of cells according to surface antigens by the use of antibody-coated columns. Fractionation of cells carrying immunoglobulins and blood group antigen. Scand J Immunol. 1972;1(1):75–87. doi: 10.1111/j.1365-3083.1972.tb03737.x. [DOI] [PubMed] [Google Scholar]
  33. Zeiller K., Pascher G. Detection of T and B cell-specific heteroantigens on electrophoretically separated lymphocytes of the mouse. Eur J Immunol. 1973 Oct;3(10):614–618. doi: 10.1002/eji.1830031004. [DOI] [PubMed] [Google Scholar]
  34. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zinkernagel R. M. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. The H-2K structure involved is coded by a single cistron defined by H-2Kb mutant mice. J Exp Med. 1976 Feb 1;143(2):437–443. doi: 10.1084/jem.143.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. von Boehmer H., Sprent J. Expression of M locus differences by B cells but not T cells. Nature. 1974 May 24;249(455):363–365. doi: 10.1038/249363a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES