Abstract
The ease of tolerance induction in B lymphocytes from fetal, neonatal, and adult mice was studied in vivo, in a cell transfer system, and in vitro. Three different tolerogens were used: ultracentrifuged BGG, DNP(6)-D-GL, and ultracentrifuged DNP(22)-BGG. Irradiated thymectomized mice were reconstituted with B cells from fetal or neonatal liver or adult spleen or bone marrow. The mice were injected with tolerogen 1 day later. They were given normal thymus cells and challenged with either BGG or DNP(44)-BGG between 4 and 14 days after tolerance induction. With BGG no difference in ease of B-cell tolerance induction was observed in mice reconstituted with B cells from 17-day fetal liver, neonatal liver, 8- day-old spleen, adult spleen, or adult bone marrow. B cells from 14-day fetal donors are relatively resistant to tolerance induction. In contrast, with DNP(6)-D-GL and DNP(22)-BGG B cells from neonatal donors were clearly more susceptible to tolerance induction than were B cells from adult donors. Comparable results were obtained in studies on tolerance induction in vitro. Neonatal B cells were more susceptible than adult B cells to tolerance induction upon culture with DNP(6)-D-GL or DNP(22)-BGG. However, neonatal and adult B cells were identical with respect to ease of tolerance induction in vitro with deaggregated BGG. The results suggest that there are multiple mechanisms for B-cell tolerance induction. Immature B cells appear to be more susceptible to tolerance induction by some mechanisms but not by others. It is suggested that immature B cells are more susceptible to tolerance induction with moderately polyvalent antigens such as hapten-carrier conjugates. With antigens like BGG which do not haverepeated epitopes no difference between mature and fetal B cells in regard to ease of tolerance induction is observed. These observations raise questions about the importance of relative ease of tolerance induction in immature B cells as a mechanism controlling the normal induction of self tolerance.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson B. Studies on the regulation of avidity at the level of the single antibody-forming cell. The effect of antigen dose and time after immunization. J Exp Med. 1970 Jul 1;132(1):77–88. doi: 10.1084/jem.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cambier J. C., Kettman J. R., Vitetta E. S., Uhr J. W. Differential susceptibility of neonatal and adult murine spleen cells to in vitro induction of B-cell tolerance. J Exp Med. 1976 Jul 1;144(1):293–297. doi: 10.1084/jem.144.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DRESSER D. W. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology. 1962 May;5:378–388. [PMC free article] [PubMed] [Google Scholar]
- DeLisi C., Goldstein B. On the mechanism of hemolytic plaque inhibition. Immunochemistry. 1974 Oct;11(10):661–665. doi: 10.1016/0019-2791(74)90223-7. [DOI] [PubMed] [Google Scholar]
- Desaymard C., Pearce B., Feldmann M. Role of epitope density in the induction of tolerance and immunity with thymus-independent antigens. III. Interaction of epitope density and receptor avidity. Eur J Immunol. 1976 Sep;6(9):646–650. doi: 10.1002/eji.1830060910. [DOI] [PubMed] [Google Scholar]
- Feldmann M., Howard J. G., Desaymard C. Role of antigen structure in the discrimination between tolerance and immunity by b cells. Transplant Rev. 1975;23:78–97. doi: 10.1111/j.1600-065x.1975.tb00150.x. [DOI] [PubMed] [Google Scholar]
- Goidl E. A., Birnbaum G., Siskind G. W. Determination of antibody avidity at the cellular level by the plaque inhibition technique: effect of valence of the inhibitor. J Immunol Methods. 1975;8(1-2):47–45. doi: 10.1016/0022-1759(75)90080-0. [DOI] [PubMed] [Google Scholar]
- Goidl E. A., Klass J., Siskind G. W. Ontogeny of B-lymphocyte function. II. Ability of endotoxin to increase the heterogeneity of affinity of the immune response of B lymphocytes from fetal mice. J Exp Med. 1976 Jun 1;143(6):1503–1520. doi: 10.1084/jem.143.6.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goidl E. A., Siskind G. W. Ontogeny of B-lymphocyte function. I. Restricted heterogeneity of the antibody response of B lymphocytes from neonatal and fetal mice. J Exp Med. 1974 Nov 1;140(5):1285–1302. doi: 10.1084/jem.140.5.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golub E. S., Mishell R. I., Weigle W. O., Dutton R. W. A modification of the hemolytic plaque assay for use with protein antigens. J Immunol. 1968 Jan;100(1):133–137. [PubMed] [Google Scholar]
- Howard J. G., Hale C. Lack of neonatal susceptibility to induction of tolerance by polysaccharide antigens. Eur J Immunol. 1976 Jul;6(7):486–492. doi: 10.1002/eji.1830060708. [DOI] [PubMed] [Google Scholar]
- Katz D. H., Davie J. M., Paul W. E., Benacerraf B. Carrier function in anti-hapten antibody responses. IV. Experimental conditions for the induction of hapten-specific tolerance or for the stimulation of anti-hapten anamnestic responses by "nonimmunogenic" hapten-polypeptide conjugates. J Exp Med. 1971 Jul 1;134(1):201–223. doi: 10.1084/jem.134.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz D. H., Hamaoka T., Benacerraf B. Immunological tolerance in bone marrow-derived lymphocytes. I. Evidence for an intracellular mechanism of inactivation of hapten-specific precursors of antibody-forming cells. J Exp Med. 1972 Dec 1;136(6):1404–1429. doi: 10.1084/jem.136.6.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klaus G. G., Cross A. M. The influence of epitope density on the immunological properties of hapten-protein conjugates. III. Induction of hapten-specific tolerance by heavily and lightly hapten-substituted serum albumin. Scand J Immunol. 1974;3(6):797–808. doi: 10.1111/j.1365-3083.1974.tb01315.x. [DOI] [PubMed] [Google Scholar]
- Metcalf E. S., Klinman N. R. In vitro tolerance induction of neonatal murine B cells. J Exp Med. 1976 Jun 1;143(6):1327–1340. doi: 10.1084/jem.143.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nossal G. J., Pike B. L. Evidence for the clonal abortion theory of B-lymphocyte tolerance. J Exp Med. 1975 Apr 1;141(4):904–917. [PMC free article] [PubMed] [Google Scholar]
- Owen J. J., Cooper M. D., Raff M. C. In vitro generation of B lymphocytes in mouse foetal liver, a mammalian 'bursa equivalent'. Nature. 1974 May 24;249(455):361–363. doi: 10.1038/249361a0. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Owen J. J., Cooper M. D., Lawton A. R., 3rd, Megson M., Gathings W. E. Differences in susceptibility of mature and immature mouse B lymphocytes to anti-immunoglobulin-induced immunoglobulin suppression in vitro. Possible implications for B-cell tolerance to self. J Exp Med. 1975 Nov 1;142(5):1052–1064. doi: 10.1084/jem.142.5.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SISKIND G. W., PATERSON P. Y., THOMAS L. INDUCTION OF UNRESPONSIVENESS AND IMMUNITY IN NEWBORN AND ADULT MICE WITH PNEUMOCOCCAL POLYSACCHARIDE. J Immunol. 1963 Jun;90:929–934. [PubMed] [Google Scholar]
- Sidman C. L., Unanue E. R. Receptor-mediated inactivation of early B lymphocytes. Nature. 1975 Sep 11;257(5522):149–151. doi: 10.1038/257149a0. [DOI] [PubMed] [Google Scholar]
- Strayer D. S., Lee W. M., Rowley D. A., Köhler H. Anti-receptor antibody. II. Induction of long-term unresponsiveness in neonatal mice. J Immunol. 1975 Feb;114(2 Pt 2):728–733. [PubMed] [Google Scholar]
- Szewczuk M. R., Halliday M., Soybel T. W., Turner D., Siskind G. W., Weksler M. E. Differences in the mechanism of tolerance to dinitrophenylated bovine gamma globulin when induced in normal adult mice or in reconstituted irradiated mice: dependence of the mechanism of tolerance on the structural organization of the lymphoid system. J Exp Med. 1977 Apr 1;145(4):968–982. doi: 10.1084/jem.145.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tewari U. J., Mukkur T. K. Isolation and physico-chemical characterization of bovine serum and colostral immunoglobulin G (IgG) subclasses. Immunochemistry. 1975 Dec;12(12):925–930. doi: 10.1016/0019-2791(75)90254-2. [DOI] [PubMed] [Google Scholar]
- Werblin T. P., Kim Y. T., Quagliata F., Siskind G. W. Studies on the control of antibody synthesis. 3. Changes in heterogeneity of antibody affinity during the course of the immune response. Immunology. 1973 Mar;24(3):477–492. [PMC free article] [PubMed] [Google Scholar]