Abstract
Inoculation of rabbit anti-idiotypic (anti-id) antibodies suppresses the subsequent appearance of a cross-reactive idiotype (CRI) associated with the anti-p-azophenylarsonate (anti-Ar) antibodies of A/J mice. Such suppressed mice produce normal concentrations of anti-Ar antibodies which lack the CRI, but against which anti-id antisera can be prepared. The anti-Ar antibodies of an individual, suppressed mouse do not in general share idiotype with anti-Ar antibodies of other A/J mice, either suppressed or nonsuppressed. The present experiments were undertaken to quantitate several "private idiotypes" in a large number of hyperimmunized A/J mice. Anti-Ar antibodies of three mice, suppressed for the CRI, were labeled with 125I and subjected to isoelectric focusing. Four single peaks, that were over 90% reactive with autologous antiid, were randomly selected for use as ligands in a radioimmunoassay, and ascitic fluids containing anti-Ar antibodies from 181 A/J mice were tested as inhibitors. Two of the four idiotypes could not be detected in any mouse other than the donor. The concentration of the idiotype was less than 1 part in 1,250 to less than 1 part in 25,000 of the anti-Ar antibody population; these are minimum values. A third idiotype was detected in 3 of the 181 mice, but at very low concentrations. The fourth idiotype was present in 28% of the mice, again at a low concentration. The data support the existence of a very large repertoire of anti-Ar antibodies in the A/J strain and are consistent with a process of random somatic mutation for generating diversity in hypervariable regions. It is proposed that the cross- reactive idiotype may be controlled by a germ line gene or a gene related to a germ line gene through a small number of somatic mutations; and that the idiotypes that were not detectable in other mice were the products of genes that had undergone extensive mutations, with a low probability of recurrence in other mice.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
- Bordenave G. R. A study of idiotypic suppression in adult rabbits immunized with Salmonella abortus-equi. Immunology. 1975 Apr;28(4):635–651. [PMC free article] [PubMed] [Google Scholar]
- Brient B. W., Nisonoff A. Quantitative investigations of idiotypic antibodies. IV. Inhibition by specific haptens of the reaction of anti-hapten antibody with its anti-idiotypic antibody. J Exp Med. 1970 Nov;132(5):951–962. doi: 10.1084/jem.132.5.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Eustachio P., Cohen J. E., Edelman G. M. Variation and control of specific antigen-binding cell populations in individual fetal mice. J Exp Med. 1976 Jul 1;144(1):259–265. doi: 10.1084/jem.144.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichmann K. Idiotype suppression. I. Influence of the dose and of the effector functions of anti-idiotypic antibody on the production of an idiotype. Eur J Immunol. 1974 Apr;4(4):296–302. doi: 10.1002/eji.1830040413. [DOI] [PubMed] [Google Scholar]
- Hart D. A., Pawlak L. L., Nisonoff A. Nature of anti-hapten antibodies arising after immune suppression of a set of cross-raactive idiotypic specificities. Eur J Immunol. 1973 Jan;3(1):44–48. doi: 10.1002/eji.1830030110. [DOI] [PubMed] [Google Scholar]
- Hart D. A., Wang A. L., Pawlak L. L., Nisonoff A. Suppression of idiotypic specificities in adult mice by administration of antiidiotypic antibody. J Exp Med. 1972 Jun 1;135(6):1293–1300. doi: 10.1084/jem.135.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter R. Standardization of the chloramine-T method of protein iodination. Proc Soc Exp Biol Med. 1970 Mar;133(3):989–992. doi: 10.3181/00379727-133-34611. [DOI] [PubMed] [Google Scholar]
- Kapsalis A. A., Tung A. S., Nisonoff A. Relative combining affinities of anti-p-azophenylarsonate antibodies bearing a cross-reactive idiotype. Immunochemistry. 1976 Sep;13(9):783–787. doi: 10.1016/0019-2791(76)90201-9. [DOI] [PubMed] [Google Scholar]
- Klinman N. R., Press J. L. The characterization fo the B-cell repertoire specific for the 2,4-dinitrophenyl and 2,4,6-trinitrophenyl determinants in neonatal BALB/c mice. J Exp Med. 1975 May 1;141(5):1133–1146. doi: 10.1084/jem.141.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuettner M. G., Wang A. L., Nisonoff A. Quantitative investigations of idiotypic antibodies. VI. Idiotypic specificity as a potential genetic marker for the variable regions of mouse immunoglobulin polypeptide chains. J Exp Med. 1972 Mar 1;135(3):579–595. doi: 10.1084/jem.135.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel H. G. Experimental approaches tohomogenous antibody populations. iIndividual antigenic specificity, cross specificity and diversity of human antibodies. Fed Proc. 1970 Jan-Feb;29(1):55–58. [PubMed] [Google Scholar]
- Köhler G. Frequency of precursor cells against the enzyme beta-galactosidase: an estimate of the BALB/c strain antibody repertoire. Eur J Immunol. 1976 May;6(5):340–347. doi: 10.1002/eji.1830060507. [DOI] [PubMed] [Google Scholar]
- Lydyard P. M., Grossi C. E., Cooper M. D. Ontogeny of B cells in the chicken. I. Sequential development of clonal diversity in the bursa. J Exp Med. 1976 Jul 1;144(1):79–97. doi: 10.1084/jem.144.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nisonoff A., Ju S. Studies of a cross-reactive idiotype associated with anti-para-azophenylarsonate antibodies of A/J mice. Ann Immunol (Paris) 1976 Jun-Jul;127(3-4):347–356. [PubMed] [Google Scholar]
- Pawlak L. L., Hart D. A., Nisonoff A. Requirements for prolonged suppression of an idiotypic specificity in adult mice. J Exp Med. 1973 Jun 1;137(6):1442–1458. doi: 10.1084/jem.137.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pawlak L. L., Mushinski E. B., Nisonoff A., Potter M. Evidence for the linkage of the IGC H locus to a gene controlling the idiotypic specificity of anti-p-azophenylarsonate antibodies in strain A mice. J Exp Med. 1973 Jan 1;137(1):22–31. doi: 10.1084/jem.137.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Press J. L., Klinman N. R. Frequency of hapten-specific B cells in neonatal and adult murine spleens. Eur J Immunol. 1974 Mar;4(3):155–159. doi: 10.1002/eji.1830040302. [DOI] [PubMed] [Google Scholar]
- Strayer D. S., Cosenza H., Lee W. M., Rowley D. A., Köhler H. Neonatal tolerance induced by antibody against antigen-specific receptor. Science. 1974 Nov 15;186(4164):640–643. doi: 10.1126/science.186.4164.640. [DOI] [PubMed] [Google Scholar]
- Tonegawa S. Reiteration frequency of immunoglobulin light chain genes: further evidence for somatic generation of antibody diversity. Proc Natl Acad Sci U S A. 1976 Jan;73(1):203–207. doi: 10.1073/pnas.73.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonegawa S., Steinberg C., Dube S., Bernardini A. Evidence for somatic generation of antibody diversity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4027–4031. doi: 10.1073/pnas.71.10.4027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tung A. S., Ju S. T., Sato S., Nisonoff A. Production of large amounts of antibodies in individual mice. J Immunol. 1976 Mar;116(3):676–681. [PubMed] [Google Scholar]
- Tung A. S., Nisonoff A. Isolation from individual A/J mice of anti-rho-azophenylarsonate antibodies bearing a cross-reactive idiotype. J Exp Med. 1975 Jan 1;141(1):112–126. doi: 10.1084/jem.141.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T. T., Kabat E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–250. doi: 10.1084/jem.132.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]