Abstract
The genetic control of the immune response of inbred strains of mice to certain antigens has been demonstrated to be governed by a set of Ir genes linked to the major histocompatibility complex (H-2) of mice (1,2). Until recently, the control was thought to be governed by single, dominant genes, located within the I region of the H-2 complex. Merryman et al. (3) originally demonstrated that the immune response to the synthetic terpolymer L-glutamic acid, L-lysine, L-phenylaline (GLφ) is under dominant, H-2-linked Ir gene control (4-7). This was shown both by crossing two nonresponder parental strains to produce responder offspring in the F(1) generation, and by the analysis of appropriate recombinant stains of mice. The two complementing genes have been mapped in the IA and IC regions of the H-2 complex, and have been termed β and α, respectively (5,6). Thus, any strain of mouse may contain neither, one, or both genes. Only mice containing both genes are capable of responding to GLφ. It has been shown using F(1) hybrid and recombinant strains of mice, that the α- and β-genes can complement each other in either the cis (on the same chromosome) or in the trans (on different chromosomes) position (8). In this paper we report the results of studies aimed at answering the question of whether or not the α- and β- genes can complement each other when they are present in different lymphoid cells. To this end we have constructed allophenic mice composed of two nonresponder strains (A and C57BL/6), which show gene complementation in the F(1) generation. Allophenic mice are chimeras containing two cell types coexisting in a “normal” environment. The mice were tested for the specific cellular composition of the two parental cell types and were found to possess a complete range in the relative proportion of the two cell types. This report demonstrates that regardless of the mixture of cell types present in the allophenic mice, none of them were responders to GLφ. Thus no complementation of the α- and β-genes is seen when the two genes are present in different cells.
Full Text
The Full Text of this article is available as a PDF (444.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benacerraf B., McDevitt H. O. Histocompatibility-linked immune response genes. Science. 1972 Jan 21;175(4019):273–279. doi: 10.1126/science.175.4019.273. [DOI] [PubMed] [Google Scholar]
- Dorf M. E., Benacerraf B. Complementation of H-2-linked Ir genes in the mouse. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3671–3675. doi: 10.1073/pnas.72.9.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorf M. E., Maurer P. H., Merryman F., Benacerraf B. Inclusion group systems and cis-trans effects in responses controlled by the two complementing Ir-GLphi genes. J Exp Med. 1976 Apr 1;143(4):889–896. doi: 10.1084/jem.143.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATCHALSKI E., SELA M. Synthesis and chemical properties of poly-alpha-amino acids. Adv Protein Chem. 1958;13:243–492. doi: 10.1016/s0065-3233(08)60600-2. [DOI] [PubMed] [Google Scholar]
- Katz D. H., Dorf M. E., Benacerraf B. Control of t-lymphocyte and B-lymphocyte activation by two complementing Ir-GLphi immune response genes. J Exp Med. 1976 Apr 1;143(4):906–918. doi: 10.1084/jem.143.4.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDevitt H. O., Chinitz A. Genetic control of the antibody response: relationship between immune response and histocompatibility (H-2) type. Science. 1969 Mar 14;163(3872):1207–1208. doi: 10.1126/science.163.3872.1207. [DOI] [PubMed] [Google Scholar]
- Merryman C. F., Maurer P. H., Bailey D. W. Genetic control of immune response in mice to a glutamic acid, lysine, phenylalanine copolymer. 3. Use of recombinant inbred strains of mice to establish association of immune response genes with H-2 genotype. J Immunol. 1972 Apr;108(4):937–940. [PubMed] [Google Scholar]
- Mozes E., Isac R., Taussig M. J. Antigen-specific T-cell factors in the genetic control of the immune response to poly(Tyr,Glu)-polyDLAla--polyLys. Evidence for T- and B-cell defects in SJL mice. J Exp Med. 1975 Mar 1;141(3):703–707. doi: 10.1084/jem.141.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro A. J., Taussig M. J. Two genes in the major histocompatibility complex control immune response. Nature. 1975 Jul 10;256(5513):103–106. doi: 10.1038/256103a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz R. H., Dorf M. E., Benacerraf B., Paul W. E. The requirement for two complementing Ir-GLphi immune response genes in the T-lymphocyte proliferative response to poly-(Glu53Lys36Phe11). J Exp Med. 1976 Apr 1;143(4):897–905. doi: 10.1084/jem.143.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shreffler D. C., David C. S. The H-2 major histocompatibility complex and the I immune response region: genetic variation, function, and organization. Adv Immunol. 1975;20:125–195. doi: 10.1016/s0065-2776(08)60208-4. [DOI] [PubMed] [Google Scholar]
- Taussig M. J., Munro A. J. Antigen-specific T-cell factor in cell cooperation and genetic control of the immune response. Fed Proc. 1976 Jul;35(9):2061–2066. [PubMed] [Google Scholar]
- Warner C. M., Fitzmaurice M., Maurer P. H., Merryman C. F., Schmerr M. J. The immune response of tetraparental mice to two synthetic amino acid polymers: "high-conjugation" 2,4 dinitrophenyl-glutamic acid57-lysine38-alanine5 (DNP-GLA5) and glutamic acid60 alanine30 tyrosine10 (GAT10). J Immunol. 1973 Dec;111(6):1887–1893. [PubMed] [Google Scholar]
