Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1977 Mar 1;145(3):473–489. doi: 10.1084/jem.145.3.473

Nonspecific activation of murine lymphocytes. I. Proliferation and polyclonal activation induced by 2-mercaptoethanol and alpha- thioglycerol

PMCID: PMC2180719  PMID: 233897

Abstract

The effect of 2-mercaptoethanol (2-ME) and alpha-thioglycerol (alpha TG) on proliferation and polyclonal activation of lymphocytes was studied in cultures of spleen cells from C3H mice. Inclusion in serum- free or serum-containing medium of the optimal concentration (5 x 10(- 5) M) of either 2-ME or alpha TG resulted in highly significant uptake and incorporation of tritiated thymidine ([3H]TdR) into DNA and in morphological blast transformation. These phenomena were dose- dependent, with both lower and higher doses causing less marked effects. The kinetic peak of these responses was found to occur at day 3 of culture. Improved cellular viability could not explain these results, because by day 3 there was no significant difference in viability between cells cultured in the presence or absence of 2-ME. 2- ME evoked a proliferative response in cultures of congenitally athymic (nu/nu) spleen cells that exhibited a similar but lower dose-response profile compared with that of heterozygous (nu/+) littermates. Cultures of bone marrow-derived (B) lymphocytes, generated by treatment of spleen cells with rabbit antithymocyte serum and complement, incorporated [3H]TdR to a degree at least equal to that of normal spleen cell cultures. Thymus-dependent (T) cells did not support significant 2-ME, alpha TG, or Concanavalin A responses in the absence of serum. However, when cultured in 5% fetal calf serum, definite T- cell responses occurred, though always of a lower magnitude than B-cell responses in this system. When the enriched B-cell and T-cell preparations were co-cultured, a synergistic response was noted. Macrophage dependency of the 2-ME and alpha TG effect was shown to be minimal. It is likely that the greater effectiveness of alpha TG relative to 2-ME is due to differences in the chemical structure of these two thiol compounds. The advantages of utilizing 2-ME and alpha TG as probes in the study of lymphocyte activation are evaluated and their possible mechanisms of action are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson J., Möller G., Sjöberg O. Selective induction of DNA synthesis in T and B lymphocytes. Cell Immunol. 1972 Aug;4(4):381–393. doi: 10.1016/0008-8749(72)90040-8. [DOI] [PubMed] [Google Scholar]
  2. Andersson J., Sjöberg O., Möller G. Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur J Immunol. 1972 Aug;2(4):349–353. doi: 10.1002/eji.1830020410. [DOI] [PubMed] [Google Scholar]
  3. Andersson J., Sjöberg O., Möller G. Mitogens as probes for immunocyte activation and cellular cooperation. Transplant Rev. 1972;11:131–177. doi: 10.1111/j.1600-065x.1972.tb00048.x. [DOI] [PubMed] [Google Scholar]
  4. Bevan M. J., Epstein R., Cohn M. The effect of 2-mercaptoethanol on murine mixed lymphocyte cultures. J Exp Med. 1974 Apr 1;139(4):1025–1030. doi: 10.1084/jem.139.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broome J. D., Jayaram H. N. Studies of the mechanism of growth promotion of lymphoma cells by 2-mercaptoethanol in vitro. Acta Neuropathol Suppl. 1975;Suppl 6:41–45. doi: 10.1007/978-3-662-08456-4_6. [DOI] [PubMed] [Google Scholar]
  6. Broome J. D., Jeng M. W. Promotion of replication in lymphoid cells by specific thiols and disulfides in vitro. Effects on mouse lymphoma cells in comparison with splenic lymphocytes. J Exp Med. 1973 Sep 1;138(3):574–592. doi: 10.1084/jem.138.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cerottini J. C., Engers H. D., Macdonald H. R., Brunner T. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J Exp Med. 1974 Sep 1;140(3):703–717. doi: 10.1084/jem.140.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen C., Hirsch J. G. The effects of mercaptoethanol and of peritoneal macrophages on the antibody-forming capacity of nonadherent mouse spleen cells in vitro. J Exp Med. 1972 Sep 1;136(3):604–617. doi: 10.1084/jem.136.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Click R. E., Benck L., Alter B. J. Enhancement of antibody synthesis in vitro by mercaptoethanol. Cell Immunol. 1972 Jan;3(1):156–160. doi: 10.1016/0008-8749(72)90237-7. [DOI] [PubMed] [Google Scholar]
  10. Coutinho A., Gronowicz E., Bullock W. W., Möller G. Mechanism of thymus-independent immunocyte triggering. Mitogenic activation of B cells results in specific immune responses. J Exp Med. 1974 Jan 1;139(1):74–92. doi: 10.1084/jem.139.1.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coutinho A., Möller G., Anderson J., Bullock W. W. In vitro activation of mouse lymphocytes in serum-free medium: effect of T and B cell mitogens on proliferation and antibody synthesis. Eur J Immunol. 1973 May;3(5):299–306. doi: 10.1002/eji.1830030509. [DOI] [PubMed] [Google Scholar]
  12. Diamantstein T., Blitstein-Willinger E. Relationship between biological activities of polymers. I. Immunogenicity, C3 activation, mitogenicity for B cells and adjuvant properties. Immunology. 1975 Dec;29(6):1087–1092. [PMC free article] [PubMed] [Google Scholar]
  13. Engers H. D., MacDonald H. R., Cerottini J. C., Brunner K. T. Effect of delayed addition of 2-mercaptoethanol on the generation of mouse cytotoxic T lymphocytes in mixed leukocyte cultures. Eur J Immunol. 1975 Mar;5(3):223–225. doi: 10.1002/eji.1830050316. [DOI] [PubMed] [Google Scholar]
  14. Fanger M. W., Hart D. A., Wells J. V., Nisonoff A. Enhancement by reducing agents of the transformation of human and rabbit peripheral lymphocytes. J Immunol. 1970 Oct;105(4):1043–1045. [PubMed] [Google Scholar]
  15. Heber-Katz E., Click R. E. Immune responses in vitro. V. Role of mercaptoethanol in the mixed-leukocyte reaction. Cell Immunol. 1972 Nov;5(3):410–418. doi: 10.1016/0008-8749(72)90067-6. [DOI] [PubMed] [Google Scholar]
  16. Jacobs M. D., Morrison D. C. Dissociation between mitogenicity and immunogenicity of TNP-lipopolysaccharide, a T-independent antigen. J Exp Med. 1975 Jun 1;141(6):1453–1458. doi: 10.1084/jem.141.6.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kettman J., Dutton R. W. An in vitro primary immune response to 2,4,6-trinitrophenyl substituted erythrocytes: response against carrier and hapten. J Immunol. 1970 Jun;104(6):1558–1561. [PubMed] [Google Scholar]
  18. Lee K. C., Shiozawa C., Shaw A., Diener E. Requirement for accessory cells in the antibody response to T cell-independent antigens in vitro. Eur J Immunol. 1976 Jan;6(1):63–68. doi: 10.1002/eji.1830060114. [DOI] [PubMed] [Google Scholar]
  19. Lemke H., Opitz H. G. Function of 2-mercaptoethanol as a macrophage substitute in the primary immune response in vitro. J Immunol. 1976 Aug;117(2):388–395. [PubMed] [Google Scholar]
  20. MCPHERSON C. W. REDUCTION OF PSEUDOMONAS AERUGINOSA AND COLIFORM BACTERIA IN MOUSE DRINKING WATER FOLLOWING TREATMENT WITH HYDROCHLORIC ACID OR CHLORINE. Lab Anim Care. 1963 Oct;13:737–744. [PubMed] [Google Scholar]
  21. Melchers F., Andersson J. The kinectics of proliferation and maturation of mitogen-activated bone marrow-derived lymphocytes. Eur J Immunol. 1974 Oct;4(10):687–691. doi: 10.1002/eji.1830041010. [DOI] [PubMed] [Google Scholar]
  22. Metcalf D., Nossal G. J., Warner N. L., Miller J. F., Mandel T. E., Layton J. E., Gutman G. A. Growth of B-lymphocyte colonies in vitro. J Exp Med. 1975 Dec 1;142(6):1534–1549. doi: 10.1084/jem.142.6.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Metcalf D. Role of mercaptoethanol and endotoxin in stimulating B lymphocyte colony formation in vitro. J Immunol. 1976 Mar;116(3):635–638. [PubMed] [Google Scholar]
  24. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morrison D. C., Betz S. J., Jacobs D. M. Isolation of a lipid A bound polypeptide responsible for "LPS-initiated" mitogenesis of C3H/HeJ spleen cells. J Exp Med. 1976 Sep 1;144(3):840–846. doi: 10.1084/jem.144.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. North J. R., Askonas B. A. IgG response in vitro. I. The requirement for an intermediate responsive cell type. Eur J Immunol. 1976 Jan;6(1):8–15. doi: 10.1002/eji.1830060104. [DOI] [PubMed] [Google Scholar]
  27. Rogers J. C., Boldt D., Kornfeld S., Skinner A., Valeri C. R. Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1685–1689. doi: 10.1073/pnas.69.7.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rogers J. C. Characterization of DNA excreted from phytohemagglutinin-stimulated lymphocytes. J Exp Med. 1976 May 1;143(5):1249–1264. doi: 10.1084/jem.143.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartz R. H., Jackson L., Paul W. E. T lymphocyte-enriched murine peritoneal exudate cells. I. A reliable assay for antigen-induced T lymphocyte proliferation. J Immunol. 1975 Nov;115(5):1330–1338. [PubMed] [Google Scholar]
  30. Sjöberg O., Andersson J., Möller G. Requirement for adherent cells in the primary and secondary immune response in vitro. Eur J Immunol. 1972 Apr;2(2):123–126. doi: 10.1002/eji.1830020206. [DOI] [PubMed] [Google Scholar]
  31. Skidmore B. J., Chiller J. M., Morrison D. C., Weigle W. O. Immunologic properties of bacterial lipopolysaccharide (LPS): correlation between the mitogenic, adjuvant, and immunogenic activities. J Immunol. 1975 Feb;114(2 Pt 2):770–775. [PubMed] [Google Scholar]
  32. Skidmore B. J., Morrison D. C., Chiller J. M., Weigle W. O. Immunologic properties of bacterial lipopolysaccharide (LPS). II. The unresponsiveness of C3H/HeJ Mouse spleen cells to LPS-induced mitogenesis is dependent on the method used to extract LPS. J Exp Med. 1975 Dec 1;142(6):1488–1508. doi: 10.1084/jem.142.6.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith E., Hammarström L., Coutinho A. Association between mitogenicity and immunogenicity of 4-hydroxy-3,5-dinitrophenacetyl-lipopolysaccharide, a T-independent antigen. J Exp Med. 1976 Jun 1;143(6):1521–1527. doi: 10.1084/jem.143.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sultzer B. M., Nilsson B. S. PPD tuberculin--a B-cell mitogen. Nat New Biol. 1972 Dec 13;240(102):198–200. doi: 10.1038/newbio240198a0. [DOI] [PubMed] [Google Scholar]
  35. Watson J., Trenkner E., Cohn M. The use of bacterial lipopolysaccharides to show that two signals are required for the induction of antibody synthesis. J Exp Med. 1973 Sep 1;138(3):699–714. doi: 10.1084/jem.138.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weksler M. E., Kuntz M. M. Synergy between human T and B lymphocytes in their response to phythaemagglutinin and pokeweed mitogen. Immunology. 1976 Aug;31(2):273–281. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES