Abstract
An increased in vitro phosphorylation of nonhistone nuclear proteins (NHP) was observed in the nuclei isolated from rabbit lymphocytes which had been stimulated with anti-Ig for 4 h. No concomitant increase of phosphorylation in histones or 0.14 M NaCl-soluble proteins was observed. The increase of in vitro phosphorylation of NHP was also observed in the nuclei isolated from nonstimulated cells when these nuclei were preincubated for 2 h with cell-free extracts from anti-Ig- stimulated cells. The active substance in cell-free extracts was maximally induced when lymphocytes were stimulated with anti-Ig for 2 h. The induction of an increased phosphorylation of NHP in nonstimulated nuclei with the cell-free extracts was not due to decrease of the adenosine triphosphate pool in the extracts from anti- Ig-stimulated cells. The active substance in cell-free extracts was not NHP-protein kinase itself, but it probably activated NHP-protein kinase in quiescent nuclei. The active substance was nondialyzable and probably protein. It was resistant against heating at 56 degrees C for 30 min, but the activity was completely destroyed by heating at 90 degrees C for 30 min. The active substance may be responsible for the transduction of the membrane-mediated signals given through Ig receptors to nuclei.
Full Text
The Full Text of this article is available as a PDF (966.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson J., Bullock W. W., Melchers F. Inhibition of mitogenic stimulation of mouse lymphocytes by anti-mouse immunoglobulin antibodies. I. Mode of action. Eur J Immunol. 1974 Nov;4(11):715–722. doi: 10.1002/eji.1830041103. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker E. L., Unanue E. R. The requirement for esterase activation in the anti-immunoglobulin-triggered movement of B lymphocytes. J Immunol. 1976 Jul;117(1):27–32. [PubMed] [Google Scholar]
- Benbow R. M., Ford C. C. Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2437–2441. doi: 10.1073/pnas.72.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freedman M. H., Raff M. C. Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature. 1975 May 29;255(5507):378–382. doi: 10.1038/255378a0. [DOI] [PubMed] [Google Scholar]
- Hadden J. W., Hadden E. M., Haddox M. K., Goldberg N. D. Guanosine 3':5'-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3024–3027. doi: 10.1073/pnas.69.10.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson P. M., Gould D., Becker E. L. Activation of stimulus-specific serine esterases (proteases) in the initiation of platelet secretion. I. Demonstration with organophosphorus inhibitors. J Exp Med. 1976 Dec 1;144(6):1657–1673. doi: 10.1084/jem.144.6.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jazwinski S. M., Wang J. L., Edelman G. M. Initiation of replication in chromosomal DNA induced by extracts from proliferating cells. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2231–2235. doi: 10.1073/pnas.73.7.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson E. M., Hadden J. W. Phosphorylation of lymphocyte nuclear acidic proteins: regulation by cyclic nucleotides. Science. 1975 Mar 28;187(4182):1198–1200. doi: 10.1126/science.163491. [DOI] [PubMed] [Google Scholar]
- Johnson E. M., Karn J., Allfrey V. G. Early nuclear events in the induction of lymphocyte proliferation by mitogens. Effects of concanavalin A on the phosphorylation and distribution of non-histone chromatin proteins. J Biol Chem. 1974 Aug 10;249(15):4990–4999. [PubMed] [Google Scholar]
- Kearney J. F., Cooper M. D., Lawton A. R. B lymphocyte differentiation induced by lipopolysaccharide. III. Suppression of B cell maturation by anti-mouse immunoglobulin antibodies. J Immunol. 1976 Jun;116(6):1664–1668. [PubMed] [Google Scholar]
- Kincade P. W., Lawton A. R., Bockman D. E., Cooper M. D. Suppression of immunoglobulin G synthesis as a result of antibody-mediated suppression of immunoglobulin M synthesis in chickens. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1918–1925. doi: 10.1073/pnas.67.4.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto T., Ishizaka K. Regulation of antibody response in vitro. IX. Induction of secondary anti-hapten IgG antibody response by anti-immunoglobulin and enhancing soluble factor. J Immunol. 1975 Feb;114(2 Pt 1):585–591. [PubMed] [Google Scholar]
- Kishimoto T., Miyake T., Nishizawa Y., Watanabe T., Yamamura Y. Triggering mechanism of B lymphocytes. I. Effect of anti-immunoglobulin and enhancing soluble factor on differentiation and proliferation of B cells. J Immunol. 1975 Nov;115(5):1179–1184. [PubMed] [Google Scholar]
- Levy R., Levy S., Rosenberg S. A., Simpson R. T. Selective stimulation of nonhistone chromatin protein synthesis in lymphoid cells by phytohemagglutinin. Biochemistry. 1973 Jan 16;12(2):224–228. doi: 10.1021/bi00726a008. [DOI] [PubMed] [Google Scholar]
- Mendelsohn J., Skinner A., Kornfeld S. The rapid induction by phytohemagglutinin of increased alpha-aminoisobutyric acid uptake by lymphocytes. J Clin Invest. 1971 Apr;50(4):818–826. doi: 10.1172/JCI106553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rickwood D., Riches P. G., Maggillivray A. J. Studies of the in vitro phosphorylation of chromatin non-histone proteins in isolated nuclei. Biochim Biophys Acta. 1973 Feb 23;299(1):162–171. doi: 10.1016/0005-2787(73)90408-5. [DOI] [PubMed] [Google Scholar]
- Smith J. W., Steiner A. L., Newberry W. M., Jr, Parker C. W. Cyclic adenosine 3',5'-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation. J Clin Invest. 1971 Feb;50(2):432–441. doi: 10.1172/JCI106510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teng C. S., Teng C. T., Allfrey V. G. Studies of nuclear acidic proteins. Evidence for their phosphorylation, tissue specificity, selective binding to deoxyribonucleic acid, and stimulation effects on transcription. J Biol Chem. 1971 Jun 10;246(11):3597–3609. [PubMed] [Google Scholar]
- Unanue E. R., Ault K. A., Karnovsky M. J. Ligand-induced movement of lymphocyte surface macromolecules. IV. Stimulation of cell motility by anti-Ig and lack of relationship to capping. J Exp Med. 1974 Feb 1;139(2):295–312. doi: 10.1084/jem.139.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner N. L. Membrane immunoglobulins and antigen receptors on B and T lymphocytes. Adv Immunol. 1974;19(0):67–216. doi: 10.1016/s0065-2776(08)60252-7. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Kishimoto T., Miyake T., Nishizawa Y., Inoue H. Triggering mechanism of B lymphocytes. II. Induction of ornithine decarboxylase in B cells by anti-immunoglobulin and enhancing soluble factor. J Immunol. 1975 Nov;115(5):1185–1190. [PubMed] [Google Scholar]