Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jun;138(3):678–683. doi: 10.1128/jb.138.3.678-683.1979

Light-induced, carrier-mediated transport of tetracycline by Rhodopseudomonas sphaeroides.

J Weckesser, J A Magnuson
PMCID: PMC218090  PMID: 37230

Abstract

Tetracycline accumulation by the phototrophic bacterium Rhodopseudomonas sphaeroides has been studied, using the fluorescence properties of the antibiotic and measuring uptake of [7- 3H]tetracycline. Accumulation was carrier mediated, with a Km of approximately 300 micronM. Efflux also appeared to be carried mediated, with a Km of 25 mM. Chlorotetracycline competitively inhibited tetracycline transport. The transport was energy dependent. Efflux occurred during the influx process, and an energy-requiring steady state was reached when influx balanced efflux. Transport was inhibited by metabolic inhibitors such as antimycin A, cyanide, and iodoacetate. Proton conductors such as carbonylcyanide m-chlorophenyl hydrazone were strongly inhibitory. Efflux was not energy dependent. Efflux is partially blocked by mercuric ions and completely blocked by an external pH of 9 to 11. Although efflux rates increased continuously with lowering of the pH, influx rates have a sharp maximum at pH 7.

Full text

PDF
678

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dockter M. E., Magnuson J. A. Characterization of the active transport of chlorotetracycline in staphylococcus aureus by a fluorescence technique. J Supramol Struct. 1974;2(1):32–44. doi: 10.1002/jss.400020105. [DOI] [PubMed] [Google Scholar]
  2. Dockter M. E., Trumble W. R., Magnuson J. A. Membrane lateral phase separations and chlortetracycline transport by Bacillus megaterium. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1319–1323. doi: 10.1073/pnas.75.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harold F. M., Pavlasová E., Baarda J. R. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Biochim Biophys Acta. 1970;196(2):235–244. doi: 10.1016/0005-2736(70)90011-8. [DOI] [PubMed] [Google Scholar]
  4. Harold F. M., Spitz E. Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis. J Bacteriol. 1975 Apr;122(1):266–277. doi: 10.1128/jb.122.1.266-277.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hellingwerf K. J., Michels P. A., Dorpema J. W., Konings W. N. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur J Biochem. 1975 Jul 1;55(2):397–406. doi: 10.1111/j.1432-1033.1975.tb02175.x. [DOI] [PubMed] [Google Scholar]
  6. Kanner B. I., Racker E. Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium. Biochem Biophys Res Commun. 1975 Jan 2;64(3):1054–1061. doi: 10.1016/0006-291x(75)90154-0. [DOI] [PubMed] [Google Scholar]
  7. Kerwar G. K., Gordon A. S., Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli. J Biol Chem. 1972 Jan 10;247(1):291–297. [PubMed] [Google Scholar]
  8. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  9. Lanyi J. K., Renthal R., MacDonald R. E. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Biochemistry. 1976 Apr 20;15(8):1603–1610. doi: 10.1021/bi00653a002. [DOI] [PubMed] [Google Scholar]
  10. Lanyi J. K., Yearwood-Drayton V., MacDonald R. E. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake. Biochemistry. 1976 Apr 20;15(8):1595–1603. doi: 10.1021/bi00653a001. [DOI] [PubMed] [Google Scholar]
  11. Levine M., Oxender D. L., Stein W. D. The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane. Biochim Biophys Acta. 1965 Sep 27;109(1):151–163. doi: 10.1016/0926-6585(65)90099-3. [DOI] [PubMed] [Google Scholar]
  12. MacDonald R. E., Lanyi L. K. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. Biochemistry. 1975 Jul;14(13):2882–2889. doi: 10.1021/bi00684a014. [DOI] [PubMed] [Google Scholar]
  13. Renthal R., Lanyi J. K. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Biochemistry. 1976 May 18;15(10):2136–2143. doi: 10.1021/bi00655a017. [DOI] [PubMed] [Google Scholar]
  14. Reynard A. M., Nellis L. F. Uptake of tetracycline by Escherichia coli: lack of binding of tetracycline to the uptake system. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1129–1132. doi: 10.1016/0006-291x(72)90827-3. [DOI] [PubMed] [Google Scholar]
  15. Shipley P. L., Olsen R. H. Characteristics and expression of tetracycline resistance in gram-negative bacteria carrying the Pseudomonas R factor RP1. Antimicrob Agents Chemother. 1974 Aug;6(2):183–190. doi: 10.1128/aac.6.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weckesser J., Magnuson J. A. Freie Vorträge aus der naturwissenschaftlichen Mikrobiologie. Zentralbl Bakteriol Orig A. 1976 Aug;235(1-3):153–156. [PubMed] [Google Scholar]
  17. Weckesser J., Magnuson J. A. Light-induced tetracycline accumulation by Rhodopseudomonas sphaeroides. J Supramol Struct. 1976;4(4):515–520. doi: 10.1002/jss.400040411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES