Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jun;138(3):823–831. doi: 10.1128/jb.138.3.823-831.1979

Effect of Sugars on d-Arabitol Production and Glucose Metabolism in Saccharomyces rouxii

James W Moran 1,, Lloyd D Witter 1
PMCID: PMC218110  PMID: 457595

Abstract

The effect of sugars on the production of d-arabitol and on the glucose catabolic pathways was investigated in the osmotrophic yeast Saccharomyces rouxii. The activity of d-arabitol dehydrogenase, which served as a measure of total d-arabitol production, increased when cells were grown in the presence of increasing glucose concentrations. Growth in sucrose had no effect on the enzyme activity. A high intracellular concentration of d-arabitol could be demonstrated when the cells were grown in a 60% glucose medium and could be eliminated by anaerobic growth or growth in the presence of 4 mg of chloramphenicol per ml. A mutant was isolated that would not grow in 60% glucose; although the regulation of d-arabitol dehydrogenase was altered in this strain, the production of d-arabitol was not eliminated. The activity of d-arabitol dehydrogenase followed the growth phases of the parent strain when the cells were preadapted to 30% glucose. If the cells were adapting from 1 to 30% glucose, a large increase in enzyme activity was detected before growth occurred. Protein synthesis was found to be involved in this increase in activity. There was an increased participation of the pentose phosphate pathway when the cells were grown in the presence of increasing glucose concentrations. The mutant strain had only an 11% pentose phosphate pathway participation compared with 20% for the parent strain in glucose. The results suggest that the active pentose phosphate pathway is involved in glucose tolerance by providing a plentiful supply of reduced nicotinamide adenine dinucleotide phosphate which is necessary for cell survival.

Full text

PDF
823

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W. N. Expression of cryptic beta-fructofuranosidase in Saccharomyces rouxii. J Bacteriol. 1974 Nov;120(2):886–894. doi: 10.1128/jb.120.2.886-894.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROWN A. D. ASPECTS OF BACTERIAL RESPONSE TO THE IONIC ENVIRONMENT. Bacteriol Rev. 1964 Sep;28:296–329. doi: 10.1128/br.28.3.296-329.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Amotz A., Avron M. The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. Plant Physiol. 1973 May;51(5):875–878. doi: 10.1104/pp.51.5.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boonsaeng V., Sullivan P. A., Shepherd M. G. Mannitol production in fungi during glucose catabolism. Can J Microbiol. 1976 Jun;22(6):808–816. doi: 10.1139/m76-117. [DOI] [PubMed] [Google Scholar]
  6. Brown A. D. Microbial water relations. Effects of solute concentration on the respiratory activity of sugar-tolerant and non-tolerant yeasts. J Gen Microbiol. 1975 Feb;86(2):241–249. doi: 10.1099/00221287-86-2-241. [DOI] [PubMed] [Google Scholar]
  7. Brown A. D. Microbial water relations: features of the intracellular composition of sugar-tolerant yeasts. J Bacteriol. 1974 Jun;118(3):769–777. doi: 10.1128/jb.118.3.769-777.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown A. D. Microbial water stress. Bacteriol Rev. 1976 Dec;40(4):803–846. doi: 10.1128/br.40.4.803-846.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  10. CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
  11. Chung B. H., Cannon R. Y., Smith R. C. Influence of growth temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus. Appl Environ Microbiol. 1976 Jan;31(1):39–45. doi: 10.1128/aem.31.1.39-45.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark-Walker G. D., Linnane A. W. In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem Biophys Res Commun. 1966 Oct 5;25(1):8–13. doi: 10.1016/0006-291x(66)90631-0. [DOI] [PubMed] [Google Scholar]
  13. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Corry J. E. Sugar and polyol permeability of Salmonella and osmophilic yeast cell membranes measured by turbidimetry, and its relation to heat resistance. J Appl Bacteriol. 1976 Jun;40(3):277–284. doi: 10.1111/j.1365-2672.1976.tb04175.x. [DOI] [PubMed] [Google Scholar]
  15. Gould G. W., Measures J. C. Water relations in single cells. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 29;278(959):151–166. doi: 10.1098/rstb.1977.0035. [DOI] [PubMed] [Google Scholar]
  16. Hanssens L., Verachtert H. Types of respiratory activity in Moniliella tomentosa during growth under different conditions. Appl Environ Microbiol. 1976 Jul;32(1):56–63. doi: 10.1128/aem.32.1.56-63.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. INGRAM J. M., WOOD W. A. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII. J Bacteriol. 1965 May;89:1186–1194. doi: 10.1128/jb.89.5.1186-1194.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson M. K., Johnson E. J., MacElroy R. D., Speer H. L., Bruff B. S. Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol. 1968 Apr;95(4):1461–1468. doi: 10.1128/jb.95.4.1461-1468.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klein H. P., Jahnke L. Cellular localization of acetyl-coenzyme A synthetase in yeast. J Bacteriol. 1968 Nov;96(5):1632–1639. doi: 10.1128/jb.96.5.1632-1639.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Mainzer S. E., Slayman C. W. Mitochondrial adenosine triphosphatase of wild-type and poky Neurospora crassa. J Bacteriol. 1978 Feb;133(2):584–592. doi: 10.1128/jb.133.2.584-592.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Measures J. C. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature. 1975 Oct 2;257(5525):398–400. doi: 10.1038/257398a0. [DOI] [PubMed] [Google Scholar]
  23. ONISHI H. OSMOPHILIC YEASTS. Adv Food Res. 1963;12:53–94. [PubMed] [Google Scholar]
  24. Palumbo S. A., Witter L. D. The influence of temperature on the pathways of glucose catabolism in Pseudomonas fluorescens. Can J Microbiol. 1969 Sep;15(9):995–1000. doi: 10.1139/m69-178. [DOI] [PubMed] [Google Scholar]
  25. SCARR M. P. Osmophilic yeast in raw beet and cane sugars and intermediate sugar-refining products. J Gen Microbiol. 1951 Oct;5(4):704–713. doi: 10.1099/00221287-5-4-704. [DOI] [PubMed] [Google Scholar]
  26. SPENCER J. F., NEISH A. C., BLACKWOOD A. C., SALLANS H. R. Polyhydric alcohol production by osmophilic yeasts: studies with C14-labeled glucose. Can J Biochem Physiol. 1956 May;34(3):495–501. [PubMed] [Google Scholar]
  27. Spencer J. F. Production of polyhydric alcohols by yeasts. Prog Ind Microbiol. 1968;7:1–42. [PubMed] [Google Scholar]
  28. Suomalainen H., Nurminen T., Oura E. Aspects of cytology and metabolism of yeast. Prog Ind Microbiol. 1973;12:109–167. [PubMed] [Google Scholar]
  29. WANG C. H., STERN I., GILMOUR C. M., KLUNGSOYR S., REED D. J., BIALY J. J., CHRISTENSEN B. E., CHELDELIN V. H. Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol. 1958 Aug;76(2):207–216. doi: 10.1128/jb.76.2.207-216.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang C. H. Radiorespirometry. Methods Biochem Anal. 1967;15:311–368. doi: 10.1002/9780470110331.ch6. [DOI] [PubMed] [Google Scholar]
  31. Wilson K., McLeod B. J., Cooper R. The influence of conditions of growth on the endogenous metabolism of Saccharomyces cerevisiae: effect on respiratory activity. Antonie Van Leeuwenhoek. 1977;43(3-4):233–244. doi: 10.1007/BF02313751. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES