Abstract
It has been reported that diverse treatments which depolarize the plasma membrane of Neurospora crassa produce rapid increases in cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels. In the current study, membrane active antibiotics, which are known or putative depolarizing agents, were found to produce similar cyclic AMP increases, not only in N. crassa, but also in the distantly related fungi Saccharomyces cerevisiae and Mucor racemosus. Uncouplers of oxidative phosphorylation, which have been found to depolarize Neurospora, also produced cyclic AMP increases in all three fungi. The time course of the cyclic AMP response to these various treatments was similar in all three fungi. The fungal studies and studies on depolarized central nervous tissue suggest that cyclic AMP increases may be produced in response to plasma membrane depolarization in diverse eucaryotic cells. A model is proposed for eucaryotic microorganisms in which membrane depolarization serves as a signal of breakdown of the plasma membrane integrity. The subsequent cyclic AMP increase, in turn, may mediate cellular response to help protect the plasma membrane from chemical and mechanical threats to its integrity.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borgia P., Sypherd P. S. Control of beta-glucosidase synthesis in Mucor racemosus. J Bacteriol. 1977 May;130(2):812–817. doi: 10.1128/jb.130.2.812-817.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhart B. M., Beck R. S. Induction of beta-glucosidases in Neurospora crassa. J Bacteriol. 1973 Oct;116(1):295–303. doi: 10.1128/jb.116.1.295-303.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A., Nowacki J. A. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem J. 1971 May;122(5):701–711. doi: 10.1042/bj1220701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
- Flawiá M. M., Torres H. N. Adenylate cyclase activity in Neurospora crassa. I. General properties. J Biol Chem. 1972 Nov 10;247(21):6873–6879. [PubMed] [Google Scholar]
- Foury F., Goffeau A. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe. J Biol Chem. 1975 Mar 25;250(6):2354–2362. [PubMed] [Google Scholar]
- Grindle M. Sterol mutants of Neurospora crassa: their isolation, growth characteristics and resistance to polyene antibiotics. Mol Gen Genet. 1973 Feb 2;120(3):283–290. doi: 10.1007/BF00267158. [DOI] [PubMed] [Google Scholar]
- Grindle M. The efficacy of various mutagens and polyene antibiotics for the induction and isolation of sterol mutants of Neurospora crassa. Mol Gen Genet. 1974 Apr 9;130(1):81–90. doi: 10.1007/BF00270520. [DOI] [PubMed] [Google Scholar]
- Holz R. W. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci. 1974 May 10;235(0):469–479. doi: 10.1111/j.1749-6632.1974.tb43284.x. [DOI] [PubMed] [Google Scholar]
- Höfer M., Misra P. C. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J. 1978 Apr 15;172(1):15–22. doi: 10.1042/bj1720015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KINSKY S. C. Alterations in the permeability of Neurospora crassa due to polyene antibiotics. J Bacteriol. 1961 Dec;82:889–897. doi: 10.1128/jb.82.6.889-897.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARINI F., ARNOW P., LAMPEN J. O. The effect of monovalent cations on the inhibition of yeast metabolism by nystatin. J Gen Microbiol. 1961 Jan;24:51–62. doi: 10.1099/00221287-24-1-51. [DOI] [PubMed] [Google Scholar]
- Mach B., Slayman C. W. Mode of action of tyrocidine on Neupospora. Biochim Biophys Acta. 1966 Aug 24;124(2):351–361. doi: 10.1016/0304-4165(66)90198-x. [DOI] [PubMed] [Google Scholar]
- Mahler H. R., Lin C. C. Exogenous adenosine 3': 5'-monophosphate can release yeast from catabolite repression. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1039–1047. doi: 10.1016/0006-291x(78)91500-0. [DOI] [PubMed] [Google Scholar]
- McLaughlin S., Eisenberg M. Antibiotics and membrane biology. Annu Rev Biophys Bioeng. 1975;4(00):335–366. doi: 10.1146/annurev.bb.04.060175.002003. [DOI] [PubMed] [Google Scholar]
- Pall M. L. Cyclic AMP and the plasma membrane potential in Neurospora crassa. J Biol Chem. 1977 Oct 25;252(20):7146–7150. [PubMed] [Google Scholar]
- Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts C. T., Jr, Morse D. E. Genetic regulation of galactokinase in Tetrahymena by cyclic AMP glucose, and epinephrine. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1810–1814. doi: 10.1073/pnas.75.4.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg G., Pall M. L. Cyclic AMP and cyclic GMP in germinating conidia of Neurospora crassa. Arch Microbiol. 1978 Jul;118(1):87–90. doi: 10.1007/BF00406079. [DOI] [PubMed] [Google Scholar]
- Schlanderer G., Dellweg H. Cyclid AMP and catabolite repression in yeasts, In Schizosaccharomyces pombe glucose lowers both intracellular adenosine 3':5'-monophosphate levels and the activity of catabolite-sensitive enzymes. Eur J Biochem. 1974 Nov 1;49(1):305–316. doi: 10.1111/j.1432-1033.1974.tb03835.x. [DOI] [PubMed] [Google Scholar]
- Schwab W. G., Komor E. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. FEBS Lett. 1978 Mar 1;87(1):157–160. doi: 10.1016/0014-5793(78)80156-2. [DOI] [PubMed] [Google Scholar]
- Silverman P. M., Epstein P. M. Cyclic nucleotide metabolism coupled to cytodifferentiation of Blastocladiella emersonii. Proc Natl Acad Sci U S A. 1975 Feb;72(2):442–446. doi: 10.1073/pnas.72.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]
- Storm D. R., Rosenthal K. S., Swanson P. E. Polymyxin and related peptide antibiotics. Annu Rev Biochem. 1977;46:723–763. doi: 10.1146/annurev.bi.46.070177.003451. [DOI] [PubMed] [Google Scholar]
- Sy J., Richter D. Content of cyclic 3',5'-adenosine monophosphate and adenylyl cyclase in yeast at various growth conditions. Biochemistry. 1972 Jul 18;11(15):2788–2791. doi: 10.1021/bi00765a009. [DOI] [PubMed] [Google Scholar]
- Terenzi H. F., Flawia M. M., Tellez-Inon M. T., Torres H. N. Control of Neurospora crassa morphology by cyclic adenosine 3', 5'-monophosphate and dibutyryl cyclic adenosine 3', 5'-monophosphate. J Bacteriol. 1976 Apr;126(1):91–99. doi: 10.1128/jb.126.1.91-99.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomkins G. M. The metabolic code. Science. 1975 Sep 5;189(4205):760–763. doi: 10.1126/science.169570. [DOI] [PubMed] [Google Scholar]
- Trevithick J. R., Galsworthy P. R. Morphology of slime variants of Neurospora crassa growing on a glass surface in liquid medium. 1. Under normal conditions and 2. In the presence of inhibitors. Arch Microbiol. 1977 Nov 18;115(2):109–118. doi: 10.1007/BF00406363. [DOI] [PubMed] [Google Scholar]
- Tu J. C., Malhotra S. K. The significance of cAMP induced alterations in the cellular structure of Phycomyces. Can J Microbiol. 1977 Apr;23(4):378–388. doi: 10.1139/m77-056. [DOI] [PubMed] [Google Scholar]
- Uno I., Ishikawa T. Purification and identification of the fruiting-inducing substances in Coprinus macrorhizus. J Bacteriol. 1973 Mar;113(3):1240–1248. doi: 10.1128/jb.113.3.1240-1248.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Wijk R., Konijn T. M. Cyclic 3', 5'-amp in Saccharomyces carlsbergensis under various conditions of catabolite repression. FEBS Lett. 1971 Mar 5;13(3):184–186. doi: 10.1016/0014-5793(71)80231-4. [DOI] [PubMed] [Google Scholar]
- Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
- Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. I. Specificity and kinetics. J Bacteriol. 1966 Dec;92(6):1698–1705. doi: 10.1128/jb.92.6.1698-1705.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zonneveld B. J. The effect of glucose and manganese on adenosine-3',5'-monophosphate levels during growth and differentiation of Aspergillus nidulans. Arch Microbiol. 1976 May 3;108(1):41–44. doi: 10.1007/BF00425091. [DOI] [PubMed] [Google Scholar]
