Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Apr;138(1):24–32. doi: 10.1128/jb.138.1.24-32.1979

Genetic and biochemical studies of transport systems for branched-chain amino acids in Escherichia coli.

I Yamato, M Ohki, Y Anraku
PMCID: PMC218233  PMID: 374366

Abstract

Mutants of Escherichia coli K-12 requiring high concentrations of branched-chain amino acids for growth were isolated. One of the mutants was shown to be defective in transport activity for branched-chain amino acids. The locus of the mutation (hrbA) was mapped at 8.9 min on the E. coli genetic map by conjugational and transductional crosses. The gene order of this region is proC-hrbA-tsx. The hrbA system was responsible for the uptake activity of cytoplasmic membrane vesicles. It was not repressed by leucine. The substrate specificities and kinetics of the uptake activities were studied using cytoplasmic membrane vesicles and intact cells of the mutants grown in the presence or absence of leucine. Results showed that there are three transport systems for branched-chain amino acids, LIV-1, -2, and -3. The LIV-2 and -3 transport systems are low-affinity systems, the activities of which are detectable in cytoplasmic membrane vesicles. The systems are inhibited by norleucine but not by threonine. The LIV-2 system is also repressed by leucine. The LIV-1 transport system is a high-affinity system that is sensitive to osmotic shock. When the leucine-isoleucine-valine-threonine-binding protein is derepressed, the high-affinity system can be inhibited by threonine.

Full text

PDF
24

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma H., Anraku Y. Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding proteins of Escherichia coli. J Biochem. 1974 Dec;76(6):1165–1173. doi: 10.1093/oxfordjournals.jbchem.a130669. [DOI] [PubMed] [Google Scholar]
  2. Amanuma H., Itoh J., Anraku Y. Transport of sugars and amino acids in bacteria. XVII. On the existence and nature of substrate amino acids bound to purified branched chain amino acid-binding proteins of Escherichia coli. J Biochem. 1976 Jun;79(6):1167–1182. doi: 10.1093/oxfordjournals.jbchem.a131172. [DOI] [PubMed] [Google Scholar]
  3. Anraku Y., Kobayashi H., Amanuma H., Yamaguchi A. Transport of sugars and amino acids in bacteria. VII. Characterization of the reaction of restoration of active transport mediated by binding protein. J Biochem. 1973 Dec;74(6):1249–1261. doi: 10.1093/oxfordjournals.jbchem.a130353. [DOI] [PubMed] [Google Scholar]
  4. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase. Biochem J. 1971 Aug;124(1):75–81. doi: 10.1042/bj1240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furlong C. E., Weiner J. H. Purification of a leucine-specific binding protein from Escherichia coli. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1076–1083. doi: 10.1016/0006-291x(70)90349-9. [DOI] [PubMed] [Google Scholar]
  8. Guardiola J., De Felice M., Klopotowski T., Iaccarino M. Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12. J Bacteriol. 1974 Feb;117(2):393–405. doi: 10.1128/jb.117.2.393-405.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guardiola J., Iaccarino M. Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids. J Bacteriol. 1971 Dec;108(3):1034–1044. doi: 10.1128/jb.108.3.1034-1044.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirota Y., Inuzuka M., Tomoeda M. Elective selection of proline-requiring mutants. J Bacteriol. 1966 Jun;91(6):2392–2392. doi: 10.1128/jb.91.6.2392-.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kobayashi H., Kin E., Anraku Y. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. J Biochem. 1974 Aug;76(2):251–261. doi: 10.1093/oxfordjournals.jbchem.a130567. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. LUBIN M., KESSEL D. H., BUDREAU A., GROSS J. D. The isolation of bacterial mutants defective in amino acid transport. Biochim Biophys Acta. 1960 Aug 26;42:535–538. doi: 10.1016/0006-3002(60)90836-2. [DOI] [PubMed] [Google Scholar]
  14. Motojima K., Yamato I., Anraku Y. Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping. J Bacteriol. 1978 Oct;136(1):5–9. doi: 10.1128/jb.136.1.5-9.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oxender D. L., Anderson J. J., Mayo M. M., Quay S. C. Leucine binding protein and regulation of transport in E. coli. J Supramol Struct. 1977;6(3):419–431. doi: 10.1002/jss.400060315. [DOI] [PubMed] [Google Scholar]
  16. Quay S. C., Lawther R. P., Hatfield G. W., Oxender D. L. Branched-chain amino acid transport regulation in mutants blocked in tRNA maturation and transcriptional termination. J Bacteriol. 1978 May;134(2):683–686. doi: 10.1128/jb.134.2.683-686.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rahmanian M., Claus D. R., Oxender D. L. Multiplicity of leucine transport systems in Escherichia coli K-12. J Bacteriol. 1973 Dec;116(3):1258–1266. doi: 10.1128/jb.116.3.1258-1266.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wood J. M. Leucine transport in Escherichia coli. The resolution of multiple transport systems and their coupling to metabolic energy. J Biol Chem. 1975 Jun 25;250(12):4477–4485. [PubMed] [Google Scholar]
  19. Yamato I., Anraku Y., Hirosawa K. Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes. J Biochem. 1975 Apr;77(4):705–718. doi: 10.1093/oxfordjournals.jbchem.a130774. [DOI] [PubMed] [Google Scholar]
  20. Yamato I., Anraku Y. Transport of sugars and amino acids in bacteria. XVIII. Properties of an isoleucine carrier in the cytoplasmic membrane vesicles of Escherichia coli. J Biochem. 1977 May;81(5):1517–1523. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES