Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Apr;138(1):118–121. doi: 10.1128/jb.138.1.118-121.1979

Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.

J E Cronan Jr, R Reed, F R Taylor, M B Jackson
PMCID: PMC218246  PMID: 374358

Abstract

The lipid phase transition of Escherichia coli phospholipids containing cyclopropane fatty acids was compared with the otherwise homologous phospholipids lacking cyclopropane fatty acids. The phase transitions (determined by scanning calorimetry) of the two preparations were essentially identical. Infection of E. coli with phage T3 inhibited cyclopropane fatty acid formation over 98%, whereas infection with mutants which lack the phage coded S-adenosylmethionine cleavage enzyme had no effect on cyclopropane fatty acid synthesis. These data indicate that S-adenosylmethionine is the methylene in cyclopropane fatty acid synthesis.

Full text

PDF
118

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britton J. R., Haselkorn R. Permeability lesions in male Escherichia coli infected with bacteriophage T7. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2222–2226. doi: 10.1073/pnas.72.6.2222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Condit R. C. F factor-mediated inhibition of bacteriophage T7 growth: increased membrane permeability and decreased ATP levels following T7 infection of male Escherichia coli. J Mol Biol. 1975 Oct 15;98(1):45–59. doi: 10.1016/s0022-2836(75)80100-8. [DOI] [PubMed] [Google Scholar]
  3. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cronan J. E., Jr Molecular biology of bacterial membrane lipids. Annu Rev Biochem. 1978;47:163–189. doi: 10.1146/annurev.bi.47.070178.001115. [DOI] [PubMed] [Google Scholar]
  5. Cronan J. E., Jr, Nunn W. D., Batchelor J. G. Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli. Biochim Biophys Acta. 1974 Apr 26;348(1):63–75. doi: 10.1016/0005-2760(74)90093-9. [DOI] [PubMed] [Google Scholar]
  6. Cronan J. E., Jr Phospholipid alterations during growth of Escherichia coli. J Bacteriol. 1968 Jun;95(6):2054–2061. doi: 10.1128/jb.95.6.2054-2061.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cronan J. E., Vagelos P. R. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta. 1972 Feb 14;265(1):25–60. doi: 10.1016/0304-4157(72)90018-4. [DOI] [PubMed] [Google Scholar]
  8. Cullen J., Phillips M. C., Shipley G. G. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochem J. 1971 Dec;125(3):733–742. doi: 10.1042/bj1250733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gefter M., Hausmann R., Gold M., Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. X. Bacteriophage T3-induced S-adenosylmethionine cleavage. J Biol Chem. 1966 May 10;241(9):1995–2006. [PubMed] [Google Scholar]
  10. Goldfine H. Comparative aspects of bacterial lipids. Adv Microb Physiol. 1972;8:1–58. doi: 10.1016/s0065-2911(08)60187-3. [DOI] [PubMed] [Google Scholar]
  11. Hausmann R. Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage. J Virol. 1967 Feb;1(1):57–63. doi: 10.1128/jvi.1.1.57-63.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson M. B., Cronan J. E., Jr An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli. Biochim Biophys Acta. 1978 Oct 4;512(3):472–479. doi: 10.1016/0005-2736(78)90157-8. [DOI] [PubMed] [Google Scholar]
  13. Jackson M. B., Sturtevant J. M. Studies of the lipid phase transitions of Escherichia coli by high sensitivity differential scanning calorimetry. J Biol Chem. 1977 Jul 25;252(14):4749–4751. [PubMed] [Google Scholar]
  14. McGarrity J. T., Armstrong J. B. The effect of salt on phospholipid fatty acid composition in Escherichia coli K-12. Biochim Biophys Acta. 1975 Aug 25;398(2):258–264. doi: 10.1016/0005-2760(75)90141-1. [DOI] [PubMed] [Google Scholar]
  15. O'leary W. M. S-ADENOSYLMETHIONINE IN THE BIOSYNTHESIS OF BACTERIAL FATTY ACIDS. J Bacteriol. 1962 Nov;84(5):967–972. doi: 10.1128/jb.84.5.967-972.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):606–612. doi: 10.1073/pnas.67.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ponta H., Altendorf K. H., Schweiger M., Hirsch-Kaufmann M., Pfennig-Yeh M. L., Herrlich P. E. coli membranes become permeable to ions following T7-virus-infection. Mol Gen Genet. 1976 Dec 8;149(2):145–150. doi: 10.1007/BF00332882. [DOI] [PubMed] [Google Scholar]
  18. SHAPIRO S. K. Utilization of S-adenosylmethionine by micro-organisms. J Bacteriol. 1962 Jan;83:169–174. doi: 10.1128/jb.83.1.169-174.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Studier F. W., Movva N. R. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol. 1976 Jul;19(1):136–145. doi: 10.1128/jvi.19.1.136-145.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor F., Cronan J. E., Jr Selection and properties of Escherichia coli mutants defective in the synthesis of cyclopropane fatty acids. J Bacteriol. 1976 Feb;125(2):518–523. doi: 10.1128/jb.125.2.518-523.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES