Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Mar;137(3):1145–1150. doi: 10.1128/jb.137.3.1145-1150.1979

Urea: obligate intermediate of pyrimidine-ring catabolism in Rhodosporidium toruloides.

W M Thwaites, C H Davis, N Wallis-Biggart, L M Wondrack, M T Abbott
PMCID: PMC218294  PMID: 571431

Abstract

Urea has been shown to be an obligate intermediate in and the penultimate product of the catabolism of pyrimidine-ring nitrogen in Rhodosporidium toruloides (Rhodotorula). One of a series of mutants selected for its inability to utilize uracil as a sole source of nitrogen was unable to utilize urea also. The mutant accumulated urea and failed to form 14CO2 during supplementation with [2-14C]uracil. Radioautograms from the resulting cell extracts and media failed to reveal expected intermediates. Cell-free extracts of the mutant were shown to lack urease activity. Revertants of the mutant were essentially wild type in all tested attributes. Elements of the reductive pathway for pyrimidine catabolism are present in Rhodosporidium (O. A. Milstein and M. L. Bekker, J. Bacteriol. 127: 1-6, 1976), but is has not been determined whether this pathway is involved with production of urea.

Full text

PDF
1145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buric L., Grinberg A., Muizniek I., Novák F., Vitol M., Dienstbier Z. Uracil metabolism in golden hamster after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1977 Feb;31(2):161–169. doi: 10.1080/09553007714550181. [DOI] [PubMed] [Google Scholar]
  2. CAMPBELL L. L. Reductive degradation of pyrimidines. 5. Enzymatic conversion of N-carbamyl-beta-alanine to beta-alanine, carbon dioxide, and ammonia. J Biol Chem. 1960 Aug;235:2375–2378. [PubMed] [Google Scholar]
  3. DI CARLO F. J., SCHULTZ A. S., KENT A. M. On the mechanism of pyrimidine metabolism by yeasts. J Biol Chem. 1952 Nov;199(1):333–343. [PubMed] [Google Scholar]
  4. FINK K., CLINE R. E., HENDERSON R. B., FINK R. M. Metabolism of thymine (methyl-C14 or -2-C14) by rat liver in vitro. J Biol Chem. 1956 Jul;221(1):425–433. [PubMed] [Google Scholar]
  5. FINK K. Excretion of pyrimidine reduction products by the rat. J Biol Chem. 1956 Jan;218(1):9–14. [PubMed] [Google Scholar]
  6. FINK R. M., FINK K., HENDERSON R. B. beta-amino acid formation by tissue slices incubated with pyrimidines. J Biol Chem. 1953 Mar;201(1):349–355. [PubMed] [Google Scholar]
  7. FINK R. M., FINK K. Utilization of radiocarbon from thymidine and other precursors of ribonucleic acid in Neurospora crassa. J Biol Chem. 1962 Jul;237:2289–2290. [PubMed] [Google Scholar]
  8. Griswold W. R., Madrid V. O., Shaffer P. M., Tappen D. C., Pugh C. S., Abbott M. T. Regulation of thymidine metabolism in Neurospora crassa. J Bacteriol. 1976 Mar;125(3):1040–1047. doi: 10.1128/jb.125.3.1040-1047.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAYAISHI O., KORNBERG A. Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J Biol Chem. 1952 May;197(2):717–732. [PubMed] [Google Scholar]
  10. Hilton M. G. The metabolism of pyrimidines by proteolytic clostridia. Arch Microbiol. 1975;102(2):145–149. doi: 10.1007/BF00428359. [DOI] [PubMed] [Google Scholar]
  11. Krämer J., Kaltwasser H. Verwertung von Pyrimidinderivaten durch Hydrogenomonas facilis. II. Abbau von Thymin und Uracil durch Wildstamm und Mutanten. Arch Mikrobiol. 1969;69(2):138–148. [PubMed] [Google Scholar]
  12. LARA F. J. S. On the decomposition of pyrimidines by bacteria. I. Studies by means of the technique of simultaneous adaptation. J Bacteriol. 1952 Aug;64(2):271–277. doi: 10.1128/jb.64.2.271-277.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milstein O. A., Bekker M. L. Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis. J Bacteriol. 1976 Jul;127(1):1–6. doi: 10.1128/jb.127.1.1-6.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Palmatier R. D., McCroskey R. P., Abbott M. T. The enzymatic conversion of uracil 5-carboxylic acid to uracil and carbon dioxide. J Biol Chem. 1970 Dec 25;245(24):6706–6710. [PubMed] [Google Scholar]
  16. Piret M. C., Crokaert R., Christophe J. Le catabolisme réductif de l'uracile chez Torulopsis utilis. Arch Int Physiol Biochim. 1964 Mar;72(2):256–266. doi: 10.3109/13813456409058971. [DOI] [PubMed] [Google Scholar]
  17. Potvin B. W., Stern H. J., May S. R., Lam G. F., Krooth R. S. Inhibition by barbituric acid and its derivatives of the enzymes in rat brain which participate in the synthesis of pyrimidine ribotides. Biochem Pharmacol. 1978 Mar 1;27(5):655–665. doi: 10.1016/0006-2952(78)90501-4. [DOI] [PubMed] [Google Scholar]
  18. RUTMAN R. J., CANTAROW A., PASCHKIS K. E. The catabolism of uracil in vivo and in vitro. J Biol Chem. 1954 Sep;210(1):321–329. [PubMed] [Google Scholar]
  19. Thwaites W. M. Device for the comparison of replica plates. Appl Microbiol. 1968 Jun;16(6):956–957. doi: 10.1128/am.16.6.956-957.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsai C. S., Axelrod B. Catabolism of Pyrimidines in Rape Seedlings. Plant Physiol. 1965 Jan;40(1):39–44. doi: 10.1104/pp.40.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vilks S. R., Vitols M. Ia. Usvoenie i katabolizm 5-metiltsitozina i timina drozhzhami Rhodotorula glutinis (Fres.) Harrison. Mikrobiologiia. 1973 Jul-Aug;42(4):576–582. [PubMed] [Google Scholar]
  22. WOODWARD V. W., MUNKRES K. D., SUYAMA Y. Uracil metabolism in Neurospora crassa. Experientia. 1957 Dec 15;13(12):484–486. doi: 10.1007/BF02159410. [DOI] [PubMed] [Google Scholar]
  23. Williams L. G., Mitchell H. K. Mutants affecting thymidine metabolism in Neurospora crassa. J Bacteriol. 1969 Oct;100(1):383–389. doi: 10.1128/jb.100.1.383-389.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wondrack L. M., Hsu C. A., Abbott M. T. Thymine 7-hydroxylase and pyrimidine deoxyribonucleoside 2' -hydroxylase activities in Rhodotorula glutinis. J Biol Chem. 1978 Sep 25;253(18):6511–6515. [PubMed] [Google Scholar]
  25. Wondrack L. M., Warn B. J., Saewert M. D., Abbott M. T. Substitution of nucleoside triphosphates for ascorbate in the thymine 7-hydroxylase reaction of Rhodotorula glutinis. J Biol Chem. 1979 Jan 10;254(1):26–29. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES