Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Mar;137(3):1191–1199. doi: 10.1128/jb.137.3.1191-1199.1979

Single-stranded regions in Streptococcus pneumoniae chromosomal deoxyribonucleic acid and their relation to transformation.

P A Deddish, A W Ravin
PMCID: PMC218301  PMID: 35514

Abstract

Deoxyribonucleic acid (DNA) in lysates of both completent and noncompetent streptococcus pneumoniae cells was characterized by chromatography on benzoylated, naphthoylated diethylaminoethyl-cellulose columns, by sensitivity to Aspergillus oryzae S1 endonuclease, and by sucrose gradient analysis. The DNAs from both competent and noncompetent cells were found to contain similar extents of single-stranded regions. These single-stranded regions appeared to be intact, unpaired regions in double-stranded DNA rather than gaps, nicks, or unpaired ends in the DNA. Inhibition of cells with rifampin prior to lysis increased the amount of such single strandedness in the DNA. Lysates made at various times after [14C]thymidine-labeled cells had bound [3H]thymidine-labeled transforming DNA were also characterized by benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography. Changes in the elution profiles of DNA from cells exposed to homospecific (S. pneumoniae) donor DNA were indicative of the formation of complexes between donor DNA and the single-stranded regions of recipient DNA. In contrast, profiles of DNA from cells exposed to heterospecific (S. sanguis) DNA did not show significant changes, indicating that few such donor-recipient complexes were formed during heterospecific transformation.

Full text

PDF
1191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Deddish P. A., Ravin A. W. Relation of macromolecular synthesis in streptococci to efficiency of transformation by markers of homospecific and heterospecific origin. J Bacteriol. 1974 Mar;117(3):1158–1170. doi: 10.1128/jb.117.3.1158-1170.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  4. LeClerc J. E., Setlow J. K. Single-strand regions in the deoxyribonucleic acid of competent Haemophilus influenzae. J Bacteriol. 1975 Jun;122(3):1091–1102. doi: 10.1128/jb.122.3.1091-1102.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Raina J. L., Metzer E., Ravin A. W. Fate of heterospecific transforming DNA bound to Streptococcus sanguis. J Bacteriol. 1978 Mar;133(3):1224–1231. doi: 10.1128/jb.133.3.1224-1231.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Raina J. L., Ravin A. W. Fate of homospecific transforming DNA bound to Streptococcus sanguis. J Bacteriol. 1978 Mar;133(3):1212–1223. doi: 10.1128/jb.133.3.1212-1223.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ravin A. W., Chakrabarti T. Genetic hybridization at the unlinked thy and str loci of Streptococcus. Genetics. 1975 Oct;81(2):223–241. doi: 10.1093/genetics/81.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reid P., Speyer J. Rifampicin inhibition of ribonucleic acid and protein synthesis in normal and ethylenediaminetetraacetic acid-treated Escherichia coli. J Bacteriol. 1970 Oct;104(1):376–389. doi: 10.1128/jb.104.1.376-389.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  10. Sutton W. D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim Biophys Acta. 1971 Jul 29;240(4):522–531. doi: 10.1016/0005-2787(71)90709-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES