Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Mar;137(3):1333–1339. doi: 10.1128/jb.137.3.1333-1339.1979

Regulation of Glutamate Dehydrogenases in nit-2 and am Mutants of Neurospora crassa

Anne H Dantzig 1,, Francis L Wiegmann Jr 1, Alvin Nason 1,
PMCID: PMC218317  PMID: 35517

Abstract

The regulation of the glutamate dehydrogenases was investigated in wild-type Neurospora crassa and two classes of mutants altered in the assimilation of inorganic nitrogen, as either nitrate or ammonium. In the wild-type strain, a high nutrient carbon concentration increased the activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-glutamate dehydrogenase and decreased the activity of reduced nicotinamide adenine dinucleotide (NADH)-glutamate dehydrogenase. A high nutrient nitrogen concentration had the opposite effect, increasing NADH-glutamate dehydrogenase and decreasing NADPH-glutamate dehydrogenase. The nit-2 mutants, defective in many nitrogen-utilizing enzymes and transport systems, exhibited low enzyme activities after growth on a high sucrose concentration: NADPH-glutamate dehydrogenase activity was reduced 4-fold on NH4Cl medium, and NADH-glutamate dehydrogenase, 20-fold on urea medium. Unlike the other affected enzymes of nit-2, which are present only in basal levels, the NADH-glutamate dehydrogenase activity was found to be moderately enhanced when cells were grown on a low carbon concentration. This finding suggests that the control of this enzyme in nit-2 is hypersensitive to catabolite repression. The am mutants, which lack NADPH-glutamate dehydrogenase activity, possessed basal levels of NADH-glutamate dehydrogenase activity after growth on urea or l-aspartic acid media, like the wild-type strain, and possessed moderate levels (although three- to fourfold lower than the wild-type strain) on l-asparagine medium or l-aspartic acid medium containing NH4Cl. These regulatory patterns are identical to those of the nit-2 mutants. Thus, the two classes of mutants exhibit a common defect in NADH-glutamate dehydrogenase regulation. Double mutants of nit-2 and am had lower NADH-glutamate dehydrogenase activities than either parent. A carbon metabolite is proposed to be the repressor of NADH-glutamate dehydrogenase in N. crassa.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoine A. D. Purification and properties of the nitrate reductase isolated from Neurospora crassa mutant nit-3. Kinetics, molecular weight determination, and cytochrome involvement. Biochemistry. 1974 May 21;13(11):2289–2294. doi: 10.1021/bi00708a008. [DOI] [PubMed] [Google Scholar]
  2. Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal K. M., Smith E. L. Nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase of Neurospora. I. Isolation, subunits, amino acid composition, sulfhydryl groups, and identification of a lysine residue reactive with pyridoxal phosphate and N-ethylmaleimide. J Biol Chem. 1973 Sep 10;248(17):6002–6008. [PubMed] [Google Scholar]
  4. Brett M., Chambers G. K., Holder A. A., Fincham J. R., Wootton J. C. Mutational amino acid replacements in Neurospora crassa NADP-specific glutamate dehydrogenase. J Mol Biol. 1976 Sep 5;106(1):1–22. doi: 10.1016/0022-2836(76)90297-7. [DOI] [PubMed] [Google Scholar]
  5. Chang H. C., Mulkins G. J., Dyer J. C., Sorger G. J. Enzymatic and non-enzymatic reduction of nitrite by extracts of Neurospora crassa. J Bacteriol. 1975 Aug;123(2):755–758. doi: 10.1128/jb.123.2.755-758.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang H. C., Sorger G. J. Effect of ammonium ions on the induction of nitrite reductase in Neurospora crassa. J Bacteriol. 1976 May;126(2):1002–1004. doi: 10.1128/jb.126.2.1002-1004.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dantzig A. H., Zurowski W. K., Ball T. M., Nason A. Induction and repression of nitrate reductase in Neurospora crassa. J Bacteriol. 1978 Feb;133(2):671–679. doi: 10.1128/jb.133.2.671-679.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubois E., Grenson M., Wiame J. M. Release of the "ammonia effect" on three catabolic enzymes by NADP-specific glutamate dehydrogenaseless mutations in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1973 Feb 20;50(4):967–972. doi: 10.1016/0006-291x(73)91500-3. [DOI] [PubMed] [Google Scholar]
  9. FINCHAM J. R. Genetically determined multiple forms of glutamic dehydrogenase in Neurospora crassa. J Mol Biol. 1962 Apr;4:257–274. doi: 10.1016/s0022-2836(62)80004-7. [DOI] [PubMed] [Google Scholar]
  10. Garrett R. H., Nason A. Further purification and properties of Neurospora nitrate reductase. J Biol Chem. 1969 Jun 10;244(11):2870–2882. [PubMed] [Google Scholar]
  11. Garrett R. H., Nason A. Involvement of a B-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1603–1610. doi: 10.1073/pnas.58.4.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grenson M., Hou C. Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of saccharomyces cerevisiae. Biochem Biophys Res Commun. 1972 Aug 21;48(4):749–756. doi: 10.1016/0006-291x(72)90670-5. [DOI] [PubMed] [Google Scholar]
  13. Hanson M. A., Marzluf G. A. Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1240–1244. doi: 10.1073/pnas.72.4.1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hynes M. J. Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. J Bacteriol. 1974 Dec;120(3):1116–1123. doi: 10.1128/jb.120.3.1116-1123.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kapoor M., Grover A. K. Catabolite-controlled regulation of glutamate dehydrogenases of Neurospora crassa. Can J Microbiol. 1970 Jan;16(1):33–40. doi: 10.1139/m70-006. [DOI] [PubMed] [Google Scholar]
  16. Kinghorn J. R., Pateman J. A. NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J Gen Microbiol. 1973 Sep;78(1):39–46. doi: 10.1099/00221287-78-1-39. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lafferty M. A., Garrett R. H. Purification and properties of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem. 1974 Dec 10;249(23):7555–7567. [PubMed] [Google Scholar]
  19. NASON A., ABRAHAM R. G., AVERBACH B. C. The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim Biophys Acta. 1954 Sep;15(1):159–161. doi: 10.1016/0006-3002(54)90118-3. [DOI] [PubMed] [Google Scholar]
  20. NASON A., EVANS H. J. Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J Biol Chem. 1953 Jun;202(2):655–673. [PubMed] [Google Scholar]
  21. Nason A., Antoine A. D., Ketchum P. A., Frazier W. A., 3rd, Lee D. K. Formation of assimilatory nitrate reductase by in vitro inter-cistronic complementation in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jan;65(1):137–144. doi: 10.1073/pnas.65.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pan S. S., Nason A. Purification and characterization of homogeneous assimilatory reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase from Neurospora crassa. Biochim Biophys Acta. 1978 Apr 12;523(2):297–313. doi: 10.1016/0005-2744(78)90033-5. [DOI] [PubMed] [Google Scholar]
  23. Pateman J. A. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem J. 1969 Dec;115(4):769–775. doi: 10.1042/bj1150769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pendyala L., Wellman A. M. Purine base transport in nit-2 mutants of Neurospora crassa. J Bacteriol. 1978 Jan;133(1):401–402. doi: 10.1128/jb.133.1.401-402.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reinert W. R., Marzluf G. A. Genetic and metabolic control of the purine catabolic enzymes of Neurospora crasse. Mol Gen Genet. 1975 Aug 5;139(1):39–55. doi: 10.1007/BF00267994. [DOI] [PubMed] [Google Scholar]
  26. SANWAL B. D., LATA M. Concurrent regulation of glutamic acid dehydrogenases of Neurospora. Arch Biochem Biophys. 1962 Jun;97:582–588. doi: 10.1016/0003-9861(62)90127-3. [DOI] [PubMed] [Google Scholar]
  27. SANWAL B. D., LATA M. Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora. Biochem Biophys Res Commun. 1962 Jan 24;6:404–409. doi: 10.1016/0006-291x(62)90364-9. [DOI] [PubMed] [Google Scholar]
  28. SANWAL B. D., LATA M. The occurrence of two different glutamic dehydrogenases in Neurospora. Can J Microbiol. 1961 Jun;7:319–328. doi: 10.1139/m61-039. [DOI] [PubMed] [Google Scholar]
  29. SANWAL B. D., LATA M. The regulation of glutamic dehydrogenases and an antigenically related protein in amination deficient mutants of Neurospora. Arch Biochem Biophys. 1962 Sep;98:420–426. doi: 10.1016/0003-9861(62)90207-2. [DOI] [PubMed] [Google Scholar]
  30. SILVER W. S., McELROY W. D. Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch Biochem Biophys. 1954 Aug;51(2):379–394. doi: 10.1016/0003-9861(54)90493-2. [DOI] [PubMed] [Google Scholar]
  31. Schloemen R. H., Garrett R. H. Nitrate transport system in Neurospora crassa. J Bacteriol. 1974 Apr;118(1):259–269. doi: 10.1128/jb.118.1.259-269.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sorger G. J., Giles N. H. Genetic control of nitrate reductase in Neurospora crassa. Genetics. 1965 Oct;52(4):777–788. doi: 10.1093/genetics/52.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stachow C. S., Sanwal B. D. Regulation, purification, and some properties of the NAD-specific glutamate dehydrogenase of Neurospora. Biochim Biophys Acta. 1967 Jul 11;139(2):294–307. doi: 10.1016/0005-2744(67)90033-2. [DOI] [PubMed] [Google Scholar]
  34. Tsao T. F., Marzluf G. A. Genetic and metabolic regulation of purine base transport in Neurospora crassa. Mol Gen Genet. 1976 Dec 22;149(3):347–355. doi: 10.1007/BF00268537. [DOI] [PubMed] [Google Scholar]
  35. Veronese F. M., Nyc J. F., Degani Y., Brown D. M., Smith E. L. Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J Biol Chem. 1974 Dec 25;249(24):7922–7928. [PubMed] [Google Scholar]
  36. Wootton J. C., Chambers G. K., Taylor J. G., Fincham J. R. Amino-acid sequence homologies between the NADP-dependent glutamate dehydrogenase of Neurospora and the bovine enzyme. Nat New Biol. 1973 Jan 10;241(106):42–43. doi: 10.1038/newbio241042a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES