Abstract
Trichosporon cutaneum was grown with phenol or resorcinol as the carbon source. The formation of beta-ketoadipate from phenol, catechol, and resorcinol was shown by a manometric method using antipyrine and also by its isolation and crystallization. Metabolism of phenol begins with o-hydroxylation. This is followed by ortho-ring fission, lactonization to muconolactone, and delactonization to beta-ketoadipate. No meta-ring fission could be demonstrated. Metabolism of resorcinol begins with o-hydroxylation to 1,2,4-benzenetriol, which undergoes ortho-ring fission yielding maleylacetate. Isolating this product leads to its decarboxylation and isomerization to trans-acetylacrylic acid. Maleylacetate is reduced by crude extracts to beta-ketoadipate with either reduced nicotinamide adenine dinucleotide or reduced nicotinamide adenine dinucleotide phosphate as a cosubstrate. The enzyme catalyzing this reaction was separated from catechol 1,2-oxygenase, phenol hydroxylase, and muconate lactonizing enzyme on a diethyl-aminoethyl-Sephadex A50 column. As a result it was purified some 50-fold, as was the muconate-lactonizing enzyme. Methyl-, fluoro-, and chlorophenols are converted to a varying extent by crude extracts and by purified enzymes. None of these derivatives is converted to maleylacetate, beta-ketoadipate, or their derivatives. Cells grown on resorcinol contain enzymes that participate in the degradation of phenol and vice versa.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cain R. B., Bilton R. F., Darrah J. A. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi. Biochem J. 1968 Aug;108(5):797–828. doi: 10.1042/bj1080797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catelani D., Fiecchi A., Galli E. Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Biochem J. 1971 Jan;121(1):89–92. doi: 10.1042/bj1210089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dagley S. Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol. 1971;6(0):1–46. doi: 10.1016/s0065-2911(08)60066-1. [DOI] [PubMed] [Google Scholar]
- Duxbury J. M., Tiedje J. M., Alexander M., Dawson J. E. 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem. 1970 Mar-Apr;18(2):199–201. doi: 10.1021/jf60168a029. [DOI] [PubMed] [Google Scholar]
- Evans W. C., Smith B. S., Moss P., Fernley H. N. Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J. 1971 May;122(4):509–517. doi: 10.1042/bj1220509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENDERSON M. E. The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi of soil. J Gen Microbiol. 1961 Sep;26:155–165. doi: 10.1099/00221287-26-1-155. [DOI] [PubMed] [Google Scholar]
- Hedenskog G., Mogren H., Enebo L. A method for obtaining protein concentrates from microorganisms. Biotechnol Bioeng. 1970 Nov;12(6):947–959. doi: 10.1002/bit.260120607. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mills S. C., Child J. J., Spencer J. F. The utilization of aromatic compounds by yeasts. Antonie Van Leeuwenhoek. 1971;37(3):281–287. doi: 10.1007/BF02218497. [DOI] [PubMed] [Google Scholar]
- NAKAGAWA H., INOUE H., TAKEDA Y. CHARACTERISTICS OF CATECHOL OXYGENASE FROM BREVIBACTERIUM FUSCUM. J Biochem. 1963 Jul;54:65–74. doi: 10.1093/oxfordjournals.jbchem.a127748. [DOI] [PubMed] [Google Scholar]
- NOVOTNY P. A SIMPLE ROTARY DISINTEGRATOR FOR MICRO-ORGANISMS AND ANIMAL TISSUES. Nature. 1964 Apr 25;202:364–366. doi: 10.1038/202364a0. [DOI] [PubMed] [Google Scholar]
- Neujahr H. Y., Gaal A. Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem. 1973 Jun;35(2):386–400. doi: 10.1111/j.1432-1033.1973.tb02851.x. [DOI] [PubMed] [Google Scholar]
- Neujahr H. Y., Gaal A. Phenol hydroxylase from yeast. Sulfhydryl groups in phenol hydroxylase from Trichosporon cutaneum. Eur J Biochem. 1975 Oct 15;58(2):351–357. doi: 10.1111/j.1432-1033.1975.tb02381.x. [DOI] [PubMed] [Google Scholar]
- Neujahr H. Y., Kjellén K. G. Phenol hydroxylase from yeast. Reaction with phenol derivatives. J Biol Chem. 1978 Dec 25;253(24):8835–8841. [PubMed] [Google Scholar]
- Neujahr H. Y., Lindsjö S., Varga J. M. Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis. Antonie Van Leeuwenhoek. 1974;40(2):209–216. doi: 10.1007/BF00394378. [DOI] [PubMed] [Google Scholar]
- Neujahr H. Y., Varga J. M. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem. 1970 Mar 1;13(1):37–44. doi: 10.1111/j.1432-1033.1970.tb00896.x. [DOI] [PubMed] [Google Scholar]
- Rothera A. C. Note on the sodium nitro-prusside reaction for acetone. J Physiol. 1908 Dec 15;37(5-6):491–494. doi: 10.1113/jphysiol.1908.sp001285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SISTROM W. R., STANIER R. Y. The mechanism of catechol oxidation by Mycobacterium butyricum. J Bacteriol. 1953 Oct;66(4):404–406. doi: 10.1128/jb.66.4.404-406.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]
- Sala-Trepat J. M., Evans W. C. The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur J Biochem. 1971 Jun 11;20(3):400–413. doi: 10.1111/j.1432-1033.1971.tb01406.x. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Ornston L. N. The beta-ketoadipate pathway. Adv Microb Physiol. 1973;9(0):89–151. [PubMed] [Google Scholar]
- Varga J. M., Neujahr H. Y. Purification and properties of catechol 1,2-oxygenase from Trichosporon cutaneum. Eur J Biochem. 1970 Feb;12(3):427–434. doi: 10.1111/j.1432-1033.1970.tb00869.x. [DOI] [PubMed] [Google Scholar]
- Varga J. M., Neujahr H. Y. The effect of 1,2-naphthoquinone on catechol 1,2-oxygenase from Trichosporon cutaneum. Acta Chem Scand. 1972;26(2):509–512. doi: 10.3891/acta.chem.scand.26-0509. [DOI] [PubMed] [Google Scholar]
- Wase D. A., Hough J. S. Continuous culture of yeast on phenol. J Gen Microbiol. 1966 Jan;42(1):13–23. doi: 10.1099/00221287-42-1-13. [DOI] [PubMed] [Google Scholar]