Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):51–61. doi: 10.1128/jb.137.1.51-61.1979

Purification and properties of an inducible beta-galactosidase isolated from the yeast Kluyveromyces lactis.

R C Dickson, L R Dickson, J S Markin
PMCID: PMC218417  PMID: 33153

Abstract

beta-Galactosidase (EC 3.2.1.32) was purified 80-fold from the yeast Kluyveromyces lactis induced for this enzyme by growth on lactose. When the purified enzyme was subjected to electrophoresis on an acrylamide gel in the presence of sodium dodecyl sulfate, one protein with an apparent molecular weight of 135,000 was observed. The enzyme has a sedimentation coefficient of 9.6S. This beta-galactosidase and the one from Escherichia coli are not antigenically related. Maximal enzyme activity requires Na+ and Mn2+ and a reducing agent. beta-Galactosidase has Km values of 12 to 17 and 1.6 mM for lactose and o-nitrophenyl-beta-D-galactoside, respectively. The hydrolase and transgalactosylase activities of the enzyme are similar to those of E. coli beta-galactosidase.

Full text

PDF
51

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biermann L., Glantz M. D. Isolation and characterization of beta-galactosidase from Saccharomyces lactis. Biochim Biophys Acta. 1968 Oct 8;167(2):373–377. doi: 10.1016/0005-2744(68)90216-7. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  4. Cline A. L., Hu A. S. Some physical properties of three sugar dehydrogenases from a pseudomonad. J Biol Chem. 1965 Nov;240(11):4498–4502. [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Dickson R. C., Markin J. S. Molecular cloning and expression in E. coli of a yeast gene coding for beta-galactosidase. Cell. 1978 Sep;15(1):123–130. doi: 10.1016/0092-8674(78)90088-0. [DOI] [PubMed] [Google Scholar]
  7. Fowler A. V., Zabin I. The amino acid sequence of beta-galactosidase of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1507–1510. doi: 10.1073/pnas.74.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HERMAN A., HALVORSON H. GENETIC CONTROL OF BETA-GLUCOSIDASE SYNTHESIS IN SACCHAROMYCES LACTIS. J Bacteriol. 1963 Apr;85:901–910. doi: 10.1128/jb.85.4.901-910.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HERMAN A., HALVORSON H. IDENTIFICATION OF THE STRUCTURAL GENE FOR BETA-GLUCOSIDASE IN SACCHAROMYCES LACTIS. J Bacteriol. 1963 Apr;85:895–900. doi: 10.1128/jb.85.4.895-900.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huber R. E., Kurz G., Wallenfels K. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry. 1976 May 4;15(9):1994–2001. doi: 10.1021/bi00654a029. [DOI] [PubMed] [Google Scholar]
  11. Jobe A., Bourgeois S. lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol. 1972 Aug 28;69(3):397–408. doi: 10.1016/0022-2836(72)90253-7. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  15. Pringle J. R. Methods for avoiding proteolytic artefacts in studies of enzymes and other proteins from yeasts. Methods Cell Biol. 1975;12:149–184. doi: 10.1016/s0091-679x(08)60956-5. [DOI] [PubMed] [Google Scholar]
  16. Rodbard D., Chrambach A. Estimation of molecular radius, free mobility, and valence using polyacylamide gel electrophoresis. Anal Biochem. 1971 Mar;40(1):95–134. doi: 10.1016/0003-2697(71)90086-8. [DOI] [PubMed] [Google Scholar]
  17. Schwimmer S., Bevenue A. Reagent for Differentiation of 1,4- and 1,6-Linked Glucosaccharides. Science. 1956 Mar 30;123(3196):543–544. doi: 10.1126/science.123.3196.543. [DOI] [PubMed] [Google Scholar]
  18. Steers E., Jr, Cuatrecasas P., Pollard H. B. The purification of beta-galactosidase from Escherichia coli by affinity chromatography. J Biol Chem. 1971 Jan 10;246(1):196–200. [PubMed] [Google Scholar]
  19. Tingle M., Halvorson H. O. Mutants in Saccharomyces lactis controlling both -glucosidase and -galactosidase activities. Genet Res. 1972 Feb;19(1):27–32. doi: 10.1017/s0016672300014233. [DOI] [PubMed] [Google Scholar]
  20. Tingle M., Herman A., Halvorson H. O. Characterization and mapping of histidine genes in Saccharomyces lactis. Genetics. 1968 Mar;58(3):361–371. doi: 10.1093/genetics/58.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WALLENFELS K., MALHOTRA O. P. Galactosidases. Adv Carbohydr Chem. 1961;16:239–298. doi: 10.1016/s0096-5332(08)60264-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES