Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1978 Apr 1;147(4):973–983. doi: 10.1084/jem.147.4.973

Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis

PMCID: PMC2184243  PMID: 206648

Abstract

An acute phase of experimental autoimmune myasthenia gravis (EAMG) occurs transiently early in the immune response of Lewis rats to nicotinic acetylcholine receptors (AChR) when Bordetella pertussis is used as adjuvant. It is characterized by a destructive cellular attack directed at the postsynaptic membranes of muscle. Acute EAMG can be passively transferred to normal rats by IgG from serum of rats with chronic EAMG. In the present study, acute EAMG, induced either by passive transfer of syngeneic antibodies or by active immmunization, was inhibited in rats depleted of complement by treatment with cobra venom factor (CoF). Furthermore, passive transfer of antibodies in excess of the muscle's content of AChR was without any measurable effect in rats treated with CoF. Although 60% of the muscle's AChR was complexed with antibody, there was no reduction in the muscle's content of AChR, and neuromuscular transmission was not compromised as judged electromyographically by curare sensitivity. These data imply that redistribution, accelerated degradation, and impairment of the ionophore function of AChR, effects of antibodies described in vitro on extrajunctional AChR, do not play a significant role in vivo in impairing neuromuscular transmission in an intact neuromuscular junction. Complement appears to be a critical mediator of anti-AChR antibodies' pathogenicity in vivo.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anwyl R., Appel S. M., Narahashi T. Myasthenia gravis serum reduces acetylcholine sensitivity in cultured rat myotubes. Nature. 1977 May 19;267(5608):262–263. doi: 10.1038/267262a0. [DOI] [PubMed] [Google Scholar]
  2. Ballow M., Cochrane C. G. Two anticomplementary factors in cobra venom: hemolysis of guinea pig erythrocytes by one of them. J Immunol. 1969 Nov;103(5):944–952. [PubMed] [Google Scholar]
  3. Bevan S., Kullberg R. W., Heinemann S. F. Human myasthenic sera reduce acetylcholine sensitivity of human muscle cells in tissue culture. Nature. 1977 May 19;267(5608):263–265. doi: 10.1038/267263a0. [DOI] [PubMed] [Google Scholar]
  4. Bianco C., Nussenzweig V. Complement receptors. Contemp Top Mol Immunol. 1977;6:145–176. doi: 10.1007/978-1-4684-2841-4_5. [DOI] [PubMed] [Google Scholar]
  5. Engel A. G., Lambert E. H., Howard F. M. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc. 1977 May;52(5):267–280. [PubMed] [Google Scholar]
  6. Engel A. G., Lindstrom J. M., Lambert E. H., Lennon V. A. Ultrastructural localization of the acetylcholine receptor in myasthenia gravis and in its experimental autoimmune model. Neurology. 1977 Apr;27(4):307–315. doi: 10.1212/wnl.27.4.307. [DOI] [PubMed] [Google Scholar]
  7. Engel A. G., Tsujihata M., Lindstrom J. M., Lennon V. A. The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study. Ann N Y Acad Sci. 1976;274:60–79. doi: 10.1111/j.1749-6632.1976.tb47676.x. [DOI] [PubMed] [Google Scholar]
  8. Heinemann S., Bevan S., Kullberg R., Lindstrom J., Rice J. Modulation of acetylcholine receptor by antibody against the receptor. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3090–3094. doi: 10.1073/pnas.74.7.3090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johns T. R., Crowley W. J., Miller J. Q., Campa J. F. The syndrome of myasthenia and polymyositis with comments on therapy. Ann N Y Acad Sci. 1971 Sep 15;183:64–71. doi: 10.1111/j.1749-6632.1971.tb30742.x. [DOI] [PubMed] [Google Scholar]
  10. Lennon V. A. Immunology of the acetylcholine receptor. Immunol Commun. 1976;5(4):323–344. doi: 10.3109/08820137609044283. [DOI] [PubMed] [Google Scholar]
  11. Lennon V. A., Lindstrom J. M., Seybold M. E. Experimental autoimmune myasthenia gravis: cellular and humoral immune responses. Ann N Y Acad Sci. 1976;274:283–299. doi: 10.1111/j.1749-6632.1976.tb47693.x. [DOI] [PubMed] [Google Scholar]
  12. Lennon V. A., Lindstrom J. M., Seybold M. E. Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975 Jun 1;141(6):1365–1375. doi: 10.1084/jem.141.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lennon V. A., Westall F. C., Thompson M., Ward E. Antigen, host and adjuvant requirements for induction of hyperacute experimental autoimmune encephalomyelitis. Eur J Immunol. 1976 Nov;6(11):805–810. doi: 10.1002/eji.1830061110. [DOI] [PubMed] [Google Scholar]
  14. Lindstrom J. M., Einarson B. L., Lennon V. A., Seybold M. E. Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental automimmune myasthenia gravis. J Exp Med. 1976 Sep 1;144(3):726–738. doi: 10.1084/jem.144.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindstrom J. M., Engel A. G., Seybold M. E., Lennon V. A., Lambert E. H. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med. 1976 Sep 1;144(3):739–753. doi: 10.1084/jem.144.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindstrom J. M., Lennon V. A., Seybold M. E., Whittingham S. Experimental autoimmune myasthenia gravis and myasthenia gravis: biochemical and immunochemical aspects. Ann N Y Acad Sci. 1976;274:254–274. doi: 10.1111/j.1749-6632.1976.tb47691.x. [DOI] [PubMed] [Google Scholar]
  17. Lustig H. J., Bianco C. Antibody-mediated cell cytotoxicity in a defined system: regulation by antigen, antibody, and complement. J Immunol. 1976 Jan;116(1):253–260. [PubMed] [Google Scholar]
  18. Martinez R. D., Tarrab-Hazdai R., Aharonov A., Fuchs S. Cytophilic antibodies in experimental autoimmune myasthenia gravis. J Immunol. 1977 Jan;118(1):17–20. [PubMed] [Google Scholar]
  19. Rudofsky U. H., Steblay R. W., Pollara B. Inhibition of experimental autoimmune renal tubulointerstitial disease in guinea pigs by depletion of complement with cobra venom factor. Clin Immunol Immunopathol. 1975 Jan;3(3):396–407. doi: 10.1016/0090-1229(75)90027-6. [DOI] [PubMed] [Google Scholar]
  20. Scornik J. C. Complement-dependent immunoglobulin G receptor function in lymphoid cells. Science. 1976 May 7;192(4239):563–565. doi: 10.1126/science.1257792. [DOI] [PubMed] [Google Scholar]
  21. Seybold M. E., Lambert E. H., Lennon V. A., Lindstrom J. M. Experimental autoimmune myasthenia: clinical, neurophysiologic, and pharmacologic aspects. Ann N Y Acad Sci. 1976;274:275–282. doi: 10.1111/j.1749-6632.1976.tb47692.x. [DOI] [PubMed] [Google Scholar]
  22. Tarrab-Hazdi R., Aharonov A., Abramsky O., Yaar I., Fuchs S. Passive transfer of experimental autoimmune myasthenia by lymph node cells in inbred guinea pigs. J Exp Med. 1975 Sep 1;142(3):785–789. doi: 10.1084/jem.142.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Toyka K. V., Drachman D. B., Griffin D. E., Pestronk A., Winkelstein J. A., Fishbeck K. H., Kao I. Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N Engl J Med. 1977 Jan 20;296(3):125–131. doi: 10.1056/NEJM197701202960301. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES