Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):161–168. doi: 10.1128/jb.137.1.161-168.1979

Regulation of phenylalanine oxidase synthesis in Proteus mirabilis.

A M Labouré, C Manson, H Jouve, J Pelmont
PMCID: PMC218430  PMID: 368013

Abstract

Cells of Proteus mirabilis could oxidize L-phenylalanine to phenylpyruvate only when grown in the presence of a number of amino acids, particularly, L-alanine, L-asparagine, L-glutamate, and L-glutamine. Production of phenylalanine oxidase was slowly lost upon growth in a minimal medium containing ammonium ions as a nitrogen source but was reversed by the addition of casein hydrolysate. Oxidase activity as well as a phenylalanine-dichlorophenolindophenol (DCIP) reductase activity increased in P. mirabilis only during cell multiplication. Both rifampin and nalidixic acid caused inhibition of oxidase synthesis. A phenylalanine-active transport was found to be operative when bacteria were grown in the absence of added amino acids. After anaerobic growth, cells of P. mirabilis had lost their ability to carry the phenylalanine oxidase reaction when assayed in the presence of air, and nitrate could not be used as an electron acceptor for the oxidation of phenylalanine. However, some phenylalanine-dichlorophenolindophenol reductase activity was still present in anaerobic bacteria at the early stage of cell multiplication.

Full text

PDF
161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arlaud G., Jouve H., Pelmont J. Phospholipides et oxydation des acides aminés chez Proteus mirabilis. Biochimie. 1973;55(10):1287–1297. [PubMed] [Google Scholar]
  2. Armitage J. P., Rowbury R. J., Smith D. G. The effects of chloramphenicol, nalidixic acid and penicillin on the growth and division of swarming cells of Proteus mirabilis. J Med Microbiol. 1974 Nov;7(4):459–464. doi: 10.1099/00222615-7-4-459. [DOI] [PubMed] [Google Scholar]
  3. Duerre J. A., Chakrabarty S. l-amino acid oxidases of Proteus rettgeri. J Bacteriol. 1975 Feb;121(2):656–663. doi: 10.1128/jb.121.2.656-663.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hasin M., Rottem S., Razin S. The outer membrane of Proteus mirabilis. I. Isolation and characterization of the outer and cytoplasmic membrane fractions. Biochim Biophys Acta. 1975 Feb 14;375(3):381–394. doi: 10.1016/0005-2736(75)90354-5. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Oltmann L. F., Stouthamer A. H. Purification of cytoplasmic membranes and outer membranes from Proteus mirabilis. Arch Mikrobiol. 1973 Nov 19;93(4):311–325. doi: 10.1007/BF00427928. [DOI] [PubMed] [Google Scholar]
  8. Pelmont J., Arlaud G., Rossat A. M. L-aminoacide oxydases des enveloppes de Proteus mirabilis: propriétés générales. Biochimie. 1972;54(10):1359–1374. doi: 10.1016/s0300-9084(72)80076-2. [DOI] [PubMed] [Google Scholar]
  9. Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
  10. Rottem S., Hasin M., Razin S. The outer membrane of Proteus mirabilis. II. The extractable lipid fraction and electron-paramagnetic resonance analysis of the outer and cytoplasmic membranes. Biochim Biophys Acta. 1975 Feb 14;375(3):395–405. doi: 10.1016/0005-2736(75)90355-7. [DOI] [PubMed] [Google Scholar]
  11. Sciacovelli O., Dell'Atti A., DeGiglio A., Cassidei L. Studies on phenylpyruvic acid. I. Keto-enol tautomerism. Z Naturforsch C. 1976 Jan-Feb;31(1-2):5–11. doi: 10.1515/znc-1976-1-204. [DOI] [PubMed] [Google Scholar]
  12. Simoni R. D., Postma P. W. The energetics of bacterial active transport. Annu Rev Biochem. 1975;44:523–554. doi: 10.1146/annurev.bi.44.070175.002515. [DOI] [PubMed] [Google Scholar]
  13. Stouthamer A. H. Biochemistry and genetics of nitrate reductase in bacteria. Adv Microb Physiol. 1976;14(11):315–375. doi: 10.1016/s0065-2911(08)60230-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES