Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):221–225. doi: 10.1128/jb.137.1.221-225.1979

Requirement for membrane potential in active transport of glutamine by Escherichia coli.

C A Plate
PMCID: PMC218439  PMID: 153897

Abstract

The effect of reducing the membrane potential on glutamine transport in cells of Escherichia coli has been investigated. Addition of valinomycin to tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid-treated E. coli cells in the presence of 20 mM exogenous potassium reduced the membrane potential, as measured by the uptake of the lipophilic cation triphenylmethylphosphonium, and caused a complete inhibition of glutamine transport. Valinomycin plus potassium also caused a rapid decrease in the intracellular levels of ATP of normal E. coli cells, but had little if any effect on the ATP levels of two mutants of E. coli carrying lesions in the energy-transducing ATP complex (unc mutants). Yet both the membrane potential and the capacity to transport glutamine were depressed in the unc mutants by valinomycin and potassium. These findings are consistent with the hypothesis that both ATP and a membrane potential are essential to the active transport of glutamine by E. coli cells.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakeeva L. E., Grinius L. L., Jasaitis A. A., Kuliene V. V., Levitsky D. O., Liberman E. A., Severina I. I., Skulachev V. P. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta. 1970 Aug 4;216(1):13–21. doi: 10.1016/0005-2728(70)90154-4. [DOI] [PubMed] [Google Scholar]
  2. Berger E. A. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Natl Acad Sci U S A. 1973 May;70(5):1514–1518. doi: 10.1073/pnas.70.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
  4. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K-12: the genetic and biochemical characterisations of a strain carrying a mutation in the uncB gene. Biochim Biophys Acta. 1973 Feb 22;292(2):366–375. doi: 10.1016/0005-2728(73)90043-1. [DOI] [PubMed] [Google Scholar]
  5. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase. Biochem J. 1971 Aug;124(1):75–81. doi: 10.1042/bj1240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flagg J. L., Wilson T. H. A protonmotive force as the source of energy for galactoside transport in energy depleted Escherichia coli. J Membr Biol. 1977 Mar 8;31(3):233–255. doi: 10.1007/BF01869407. [DOI] [PubMed] [Google Scholar]
  7. Griniuviene B., Chmieliauskaite V., Melvydas V., Dzheja P., Grinius L. Conversion of Escherichia coli cell-produced metabolic energy into electric form. J Bioenerg. 1975 Mar;7(1):17–38. doi: 10.1007/BF01558460. [DOI] [PubMed] [Google Scholar]
  8. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lancaster J. R., Jr, Hinkle P. C. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. II. Symmetrical binding of a dansylgalactoside induced by an electrochemical proton gradient and by lactose efflux. J Biol Chem. 1977 Nov 10;252(21):7662–7666. [PubMed] [Google Scholar]
  11. Lieberman M. A., Hong J. S. Energization of osmotic shock-sensitive transport systems in Escherichia coli requires more than ATP. Arch Biochem Biophys. 1976 Jan;172(1):312–315. doi: 10.1016/0003-9861(76)90080-1. [DOI] [PubMed] [Google Scholar]
  12. Lieberman M. A., Simon M., Hong J. S. Characterization of Escherichia coli mutant incapable of maintaining a transmembrane potential. MetC ecfts mutations. J Biol Chem. 1977 Jun 25;252(12):4056–4067. [PubMed] [Google Scholar]
  13. Nagel de Zwaig R., Luria S. E. Genetics and physiology of colicin-tolerant mutants of Escherichia coli. J Bacteriol. 1967 Oct;94(4):1112–1123. doi: 10.1128/jb.94.4.1112-1123.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Plate C. A., Suit J. L., Jetten A. M., Luria S. E. Effects of colicin K on a mutant of Escherichia coli deficient in Ca 2+, Mg 2+-activated adenosine triphosphatase. J Biol Chem. 1974 Oct 10;249(19):6138–6143. [PubMed] [Google Scholar]
  15. Ramos S., Kaback H. R. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):848–854. doi: 10.1021/bi00624a006. [DOI] [PubMed] [Google Scholar]
  16. Ramos S., Kaback H. R. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):854–859. doi: 10.1021/bi00624a007. [DOI] [PubMed] [Google Scholar]
  17. Reeves J. P., Shechter E., Weil R., Kaback H. R. Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2722–2726. doi: 10.1073/pnas.70.10.2722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rudnick G., Schildiner S., Kaback H. R. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli. Biochemistry. 1976 Nov 16;15(23):5126–5131. doi: 10.1021/bi00668a028. [DOI] [PubMed] [Google Scholar]
  19. Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
  20. Schuldiner S., Kerwar G. K., Kaback H. R., Weil R. Energy-dependent binding of dansylgalactosides to the beta-galactoside carrier protein. J Biol Chem. 1975 Feb 25;250(4):1361–1370. [PubMed] [Google Scholar]
  21. Schuldiner S., Kung H., Kaback H. R., Weil R. Differentiation between binding and transport of dansylgalactosides in Escherichia coli. J Biol Chem. 1975 May 25;250(10):3679–3682. [PubMed] [Google Scholar]
  22. Schuldiner S., Weil R., Kaback H. R. Energy-dependent binding of dansylgalactoside to the lac carrier protein: direct binding measurements. Proc Natl Acad Sci U S A. 1976 Jan;73(1):109–112. doi: 10.1073/pnas.73.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simoni R. D., Postma P. W. The energetics of bacterial active transport. Annu Rev Biochem. 1975;44:523–554. doi: 10.1146/annurev.bi.44.070175.002515. [DOI] [PubMed] [Google Scholar]
  24. Singh A. P., Bragg P. D. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1976 Mar 12;423(3):450–461. doi: 10.1016/0005-2728(76)90200-0. [DOI] [PubMed] [Google Scholar]
  25. Singh A. P., Bragg P. D. Energetics of galactose, proline, and glutamine transport in a cytochrome-deficient mutant of Salmonella typhimurium. J Supramol Struct. 1977;6(3):389–398. doi: 10.1002/jss.400060312. [DOI] [PubMed] [Google Scholar]
  26. Szmelcman S., Adler J. Change in membrane potential during bacterial chemotaxis. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4387–4391. doi: 10.1073/pnas.73.12.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss M. J., Luria S. E. Reduction of membrane potential, an immediate effect of colicin K. Proc Natl Acad Sci U S A. 1978 May;75(5):2483–2487. doi: 10.1073/pnas.75.5.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson D. B. Source of energy for the Escherichia coli galactose transport systems induced by galactose. J Bacteriol. 1974 Nov;120(2):866–871. doi: 10.1128/jb.120.2.866-871.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES