Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Jan 1;149(1):200–215. doi: 10.1084/jem.149.1.200

G(AKSL2): a new cell surface antigen of the mouse related to the dualtropic mink cell focus-inducing class of murine leukemia virus detected by naturally occurring antibody

PMCID: PMC2184729  PMID: 216764

Abstract

Normal mouse sera were tested for cytotoxic antibody to surface antigens of cultured monolayer cells infected with AKR-derived ecotropic MuLV, xentropic MuLV, or dualtropic MCF 247 MuLV. Antibody to ecotropic MuLV-infected cells was found in a proportion of C57BL/6, C3Hf/Bi, AKR-Fv-1b, and (C3Hf/Bi X AKR)F1 mice, but not AKR or (AKR X C3Hf/Bi)F1 mice. Antibody to xenotropic MuLV-infected cells was virtually restricted to C57BL/6 mice. Antibody to MCF 247-infected cells was found in all strains tested, including AKR mice. Absorption analysis of (C3Hf/Bi x akr)f1 and AKR-Fv-1b sera with selective reactivity for MCF 247-infected cells showed that these sera recognize distinctive antigens on MCF 247-infected cells that are not present on ecotropic or xenotropic MuLV-infected cells. The transplantable AKR spontaneous leukemia AKSL2 was found to be uniquely sensitive to the cytotoxic action of naturally occurring antibody to MCF 247-related antigens and absorption tests with AKSL2 as the target cell and sera from a single AKR-Fv-1b mouse have permitted the definition of a new MuLV-related cell surface antigen, which has been designated G(AKSL2). Thymocytes from young mice of high leukemia-incidence strains (AKR, C58, and PL) express G(AKSL2), whereas thymocytes from 12 other strains do not. In AKR mice, the antigen is expressed in higher amounts on cells from thymus and bone marrow than on spleen cells. All AKR spontaneous leukemias tested express G(AKSL2), as did three MuLV- induced leukemias arising in G(AKSL2)- strains. Five X-ray-induced leukemias of G(AKSL2)- strains were G(AKSL2)-, as were MuLV+ and MuLV- chemically induced sarcomas. In the limited survey conducted to date, natural antibody to G(AKSL2) has been restricted to strains expressing G(AKSL2) in their normal tissues: AKR, AKR congenic mice AKR-Fv-1b and AKR hybrid mice (C3Hf/Bi x akr)f1 and (C57BL/6 X AKR)F1. In vitro G(AKSL2) induction tests involving MuLV infection of cultured monolayer cells showed that 8 of 12 newly isolated dualtropic MuLV shared the property of G(AKSL2) induction with the prototype MCF MuLV, MCF 247. Of the 12 ecotropic MuLV tested, only the N-tropic MuLV isolated from a leukemia originally induced by Passage A Gross virus induced G(AKSL2). The xenotropic and amphotropic MuLV isolates tested lacked G(AKSL2) inducing activity. Recognition of the g(aksl2) system provides a way to trace the origin and natural history of a class of dualtropic MCF MuLV in the mouse and to determine whether natural antibody to G(AKSL2) plays a role in AKR leukemogenesis.

Full Text

The Full Text of this article is available as a PDF (976.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chattopadhyay S. K., Hartley J. W., Lander M. R., Kramer B. S., Rowe W. P. Biochemical characterization of the amphotropic group of murine leukemia viruses. J Virol. 1978 Apr;26(1):29–39. doi: 10.1128/jvi.26.1.29-39.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeLeo A. B., Shiku H., Takahashi T., John M., Old L. J. Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma. J Exp Med. 1977 Sep 1;146(3):720–734. doi: 10.1084/jem.146.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elder J. H., Gautsch J. W., Jensen F. C., Lerner R. A., Hartley J. W., Rowe W. P. Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4676–4680. doi: 10.1073/pnas.74.10.4676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartley J. W., Rowe W. P. Clonal cells lines from a feral mouse embryo which lack host-range restrictions for murine leukemia viruses. Virology. 1975 May;65(1):128–134. doi: 10.1016/0042-6822(75)90013-6. [DOI] [PubMed] [Google Scholar]
  5. Hartley J. W., Rowe W. P., Huebner R. J. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol. 1970 Feb;5(2):221–225. doi: 10.1128/jvi.5.2.221-225.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartley J. W., Wolford N. K., Old L. J., Rowe W. P. A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc Natl Acad Sci U S A. 1977 Feb;74(2):789–792. doi: 10.1073/pnas.74.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson I. C., Lieber M. M., Todaro G. J. Mink cell line Mv 1 Lu (CCL 64). Focus formation and the generation of "nonproducer" transformed cell lines with murine and feline sarcoma viruses. Virology. 1974 Jul;60(1):282–287. doi: 10.1016/0042-6822(74)90386-9. [DOI] [PubMed] [Google Scholar]
  8. Kassel R. L., Old L. J., Carswell E. A., Fiore N. C., Hardy W. D., Jr Serum-mediated leukemia cell destruction in AKR mice. J Exp Med. 1973 Oct 1;138(4):925–938. doi: 10.1084/jem.138.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawashima K., Ikeda H., Hartley J. W., Stockert E., Rowe W. P., Old L. J. Changes in expression of murine leukemia virus antigens and production of xenotropic virus in the late preleukemic period in AKR mice. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4680–4684. doi: 10.1073/pnas.73.12.4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawashima K., Ikeda H., Stockert E., Takahashi T., Old L. J. Age-related changes in cell surface antigens of preleukemic AKR thymocytes. J Exp Med. 1976 Jul 1;144(1):193–208. doi: 10.1084/jem.144.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levy J. A. Xenotropic viruses: murine leukemia viruses associated with NIH Swiss, NZB, and other mouse strains. Science. 1973 Dec 14;182(4117):1151–1153. doi: 10.1126/science.182.4117.1151. [DOI] [PubMed] [Google Scholar]
  12. Léonard A., Deknudt G. A new marker for chromosome studies in the mouse. Nature. 1967 Apr 29;214(5087):504–505. doi: 10.1038/214504a0. [DOI] [PubMed] [Google Scholar]
  13. Nishizuka Y., Nakakuki K. Acceleration of leukemogenesis in AKR mice by grafts, cell suspensions, and cell-free centrifugates of thymuses from preleukemic AKR donors. Int J Cancer. 1968 Mar 15;3(2):203–210. doi: 10.1002/ijc.2910030205. [DOI] [PubMed] [Google Scholar]
  14. Nowinski R. C., Hays E. F. Oncogenicity of AKR endogenous leukemia viruses. J Virol. 1978 Jul;27(1):13–18. doi: 10.1128/jvi.27.1.13-18.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nowinski R. C., Kaehler S. L. Antibody to leukemia virus: widespread occurrence in inbred mice. Science. 1974 Sep 6;185(4154):869–871. doi: 10.1126/science.185.4154.869. [DOI] [PubMed] [Google Scholar]
  16. O'Donnell P. V., Stockert E. Induction of GIX antigen and gross cell surface antigen after infection by ecotropic and xenotropic murine leukemia viruses in vitro. J Virol. 1976 Dec;20(3):545–554. doi: 10.1128/jvi.20.3.545-554.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OLD L. J., BOYSE E. A. ANTIGENIC PROPERTIES OF EXPERIMENTAL LEUKEMIAS. I. SEROLOGICAL STUDIES IN VITRO WITH SPONTANEOUS AND RADIATION-INDUCED LEUKEMIAS. J Natl Cancer Inst. 1963 Oct;31:977–995. [PubMed] [Google Scholar]
  18. Obata Y., Stockert E., Boyse E. A., Tung J. S., Litman G. W. Spontaneous autoimmunization to GIX cell surface antigen in hybrid mice. J Exp Med. 1976 Aug 1;144(2):533–542. doi: 10.1084/jem.144.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Obata Y., Stockert E., O'Donnell P. V., Okubo S., Snyder H. W., Jr, Old L. J. G(RADA1): a new cell surface antigen of mouse leukemia defined by naturally occurring antibody and its relationship to murine leukemia virus. J Exp Med. 1978 Apr 1;147(4):1089–1105. doi: 10.1084/jem.147.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Old L. J., Boyse E. A., Stockert E. The G (Gross) leukemia antigen. Cancer Res. 1965 Jul;25(6):813–819. [PubMed] [Google Scholar]
  21. Old L. J., Stockert E. Immunogenetics of cell surface antigens of mouse leukemia. Annu Rev Genet. 1977;11:127–160. doi: 10.1146/annurev.ge.11.120177.001015. [DOI] [PubMed] [Google Scholar]
  22. Oldstone M. B., Aoki T., Dixon F. J. The antibody response of mice to murine leukemia virus in spontaneous infection: absence of classical immunologic tolerance (AKR mice-complement-fixing antibodies-lymphocytic choriomeningitis virus-immunofluorescence-glomerular deposits of antigen-antibody complexes). Proc Natl Acad Sci U S A. 1972 Jan;69(1):134–138. doi: 10.1073/pnas.69.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peeples P. T., Gerwin B. I., Papageorge A. G., Smith S. G. Murine sarcoma virus defectiveness. Viral polymerase expression murine and nonmurine host cells transformed by S+L-type murine sarcoma virus. Virology. 1975 Oct;67(2):344–355. doi: 10.1016/0042-6822(75)90436-5. [DOI] [PubMed] [Google Scholar]
  24. Risser R., Stockert E., Old L. J. Abelson antigen: a viral tumor antigen that is also a differentiation antigen of BALB/c mice. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3918–3922. doi: 10.1073/pnas.75.8.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rommelaere J., Faller D. V., Hopkins N. Characterization and mapping of RNase T1-resistant oligonucleotides derived from the genomes of Akv and MCF murine leukemia viruses. Proc Natl Acad Sci U S A. 1978 Jan;75(1):495–499. doi: 10.1073/pnas.75.1.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rowe W. P. Genetic factors in the natural history of murine leukemia virus infection: G. H. A. Clowes Memorial Lecture. Cancer Res. 1973 Dec;33(12):3061–3068. [PubMed] [Google Scholar]
  27. Rowe W. P., Sato H. Genetic mapping of the Fv-1 lcous of the mouse. Science. 1973 May 11;180(4086):640–641. doi: 10.1126/science.180.4086.640. [DOI] [PubMed] [Google Scholar]
  28. Scher C. D., Siegler R. Direct transformation of 3T3 cells by Abelson murine leukaemia virus. Nature. 1975 Feb 27;253(5494):729–731. doi: 10.1038/253729a0. [DOI] [PubMed] [Google Scholar]
  29. Staal S. P., Hartley J. W., Rowe W. P. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3065–3067. doi: 10.1073/pnas.74.7.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stephenson J. R., Aaronson S. A., Arnstein P., Huebner R. J., Tronick S. R. Demonstration of two immunologically distinct xenotropic type C RNA viruses of mouse cells. Virology. 1974 Sep;61(1):56–63. doi: 10.1016/0042-6822(74)90241-4. [DOI] [PubMed] [Google Scholar]
  31. Stephenson J. R., Reynolds R. K., Aaronson S. A. Isolation of temperature-sensitive mutants of murine leukemia virus. Virology. 1972 Jun;48(3):749–756. doi: 10.1016/0042-6822(72)90158-4. [DOI] [PubMed] [Google Scholar]
  32. Stockert E., Old L. J., Boyse E. A. The G-IX system. A cell surface allo-antigen associated with murine leukemia virus; implications regarding chromosomal integration of the viral genome. J Exp Med. 1971 Jun 1;133(6):1334–1355. doi: 10.1084/jem.133.6.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES