Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Jan 1;149(1):185–199. doi: 10.1084/jem.149.1.185

Regulatory functions of hapten-reactive helper and suppressor T lymphocytes. III. Amplification of a generation of tumor-specific killer T-lymphocyte activities by suppressor T-cell-depleted hapten- reactive T lymphocytes

PMCID: PMC2184739  PMID: 310858

Abstract

2,4.6-trinitrophenyl (TNP)-reactive T-cell activities were raised in mice by immunization with TNP-isologous mouse gamma globulin. After establishing that TNP-reactive T lymphocytes can serve as amplifier cells for induction of killer T lymphocytes in allogeneic system, we explored the possibility of this hapten-reactive T-cell system to amplify tumor-specific killer T-lymphocyte activity in the syngeneic system. We utlized relatively weak immunogenic syngeneic plasmacytoma X5563 in C3H/He mice. Analysis of the TNP-reactive T-cell activities revealed that such T lymphocytes express the biological functions of both major subtypes of regulatory T cells, namely suppressors and helpers, and that TNP-reactive suppressor and helper T lymphocytes, respectively, differ in their relative susceptibility to specific inactivation by TNP conjugates of the nonimmunogenic D-amino acid copolymer, D-glutamic acid, and D-lysine (D-GL). By taking advantage of the relative susceptibility-difference to TNP-D-GL, selective inactivation of TNP-reactive suppressor T cells was induced by appropriate treatment with TNP-D-GL, and the generation of TNP-reactive helper T-cell activity was amplified. The supplement of augmented TNP- reactive helper T-cell activity to the system at the immunization with syngeneic X5563 with TNP-haptenation, resulted in a striking augmentation of induction of tumor-specific killer T-lymphocyte activity, and a considerable number of hosts survived after the challenge with lethal dose of viable tumor cells. Thus, appropriate manipulations designed to induce potent hapten-reactive helper T- lymphocytes provided the potential for a very effective mode of immunoprophylaxis against tumor.

Full Text

The Full Text of this article is available as a PDF (980.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach F. H., Bach M. L., Sondel P. M. Differential function of major histocompatibility complex antigens in T-lymphocyte activation. Nature. 1976 Jan 29;259(5541):273–281. doi: 10.1038/259273a0. [DOI] [PubMed] [Google Scholar]
  2. Cantor H., Boyse E. A. Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med. 1975 Jun 1;141(6):1390–1399. doi: 10.1084/jem.141.6.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cantor H., Boyse E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med. 1975 Jun 1;141(6):1376–1389. doi: 10.1084/jem.141.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fielder R. J., Bishop C. T., Grappel S. F., Blank F. An immunogenic polysaccharide-protein conju- gate. J Immunol. 1970 Jul;105(1):265–267. [PubMed] [Google Scholar]
  5. Fujiwara H., Hamaoka T., Nishino Y., Kitagawa M. Inhibitory effect of tumor-bearing state on the generation of in vivo protective immune T cells in a syngeneic murine tumor system. Gan. 1977 Oct;68(5):589–601. [PubMed] [Google Scholar]
  6. Fujiwara H., Hamaoka T., Teshima K., Aoki H., Kitagawa M. Preferential generation of killer or helper T-lymphocyte activity directed to the tumour-associated transplantation antigens. Immunology. 1976 Aug;31(2):239–248. [PMC free article] [PubMed] [Google Scholar]
  7. Galili N., Naor D., Asjö B., Klein G. Induction of immune responsiveness in a genetically low-responsive tumor-host combination by chemical modification of the immunogen. Eur J Immunol. 1976 Jul;6(7):473–476. doi: 10.1002/eji.1830060705. [DOI] [PubMed] [Google Scholar]
  8. Haba S., Hamaoka T., Takatsu K., Kitagawa M. Selective suppression of T-cell activity in tumor-bearing mice and its improvement by lentinan, a potent anti-tumor polysaccharide. Int J Cancer. 1976 Jul 15;18(1):93–104. doi: 10.1002/ijc.2910180113. [DOI] [PubMed] [Google Scholar]
  9. Hamaoka T., Katz D. H., Benacerraf B. Radioresistance of carrier-specific helper thymus-derived lymphocytes in mice. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3453–3458. doi: 10.1073/pnas.69.11.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamaoka T., Yamaskita U., Takami T., Kitagawa M. The mechanism of tolerance induction in thymus-derived lymphocytes; I. intracellular inactivation of hapten-reactive helper T lymphocytes by hapten-nonimmunogenic copolymer of D-amino acids. J Exp Med. 1975 Jun 1;141(6):1308–1328. doi: 10.1084/jem.141.6.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamaoka T., Yoshizawa M., Yamamoto H., Kuroki M., Kitagawa M. Regulatory functions of hapten-reactive helper and suppressor T lymphocytes. II. Selective inactivation of hapten-reactive suppressor T cells by hapten-nonimmunogenic copolymers of D-amino acids, and its application to the study of suppressor T-cell effect on helper T-cell development. J Exp Med. 1977 Jul 1;146(1):91–106. doi: 10.1084/jem.146.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hashimoto Y., Sudo H. Evaluation of cell damage in immune reactions by release of radioactivity from 3 H-uridine labeled cells. Gan. 1971 Apr;62(2):139–143. [PubMed] [Google Scholar]
  13. Hashimoto Y., Yamanoha B. Induction of transplantation immunity by dansylated tumor cells. Gan. 1976 Apr;67(2):315–319. [PubMed] [Google Scholar]
  14. Klein G. Tumor antigens. Annu Rev Microbiol. 1966;20:223–252. doi: 10.1146/annurev.mi.20.100166.001255. [DOI] [PubMed] [Google Scholar]
  15. Lee S. K., Oliver R. T. Autologous leukemia-specific T-cell-mediated lymphocytotoxicity in patients with acute myelogenous leukemia. J Exp Med. 1978 Mar 1;147(3):912–922. doi: 10.1084/jem.147.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levey R. H., Medawar P. B. Nature and mode of action of antilymphocytic antiserum. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1130–1137. doi: 10.1073/pnas.56.4.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin W. J., Wunderlich J. R., Fletcher F., Inman J. K. Enhanced immunogenicity of chemically-coated syngeneic tumor cells. Proc Natl Acad Sci U S A. 1971 Feb;68(2):469–472. doi: 10.1073/pnas.68.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchison N. A. Immunologic approach to cancer. Transplant Proc. 1970 Mar;2(1):92–103. [PubMed] [Google Scholar]
  19. Philpott G. W., Bower R. J., Parker C. W. Selective cytotoxicity in a hapten substituted cell culture model system. J Immunol. 1973 Sep;111(3):930–937. [PubMed] [Google Scholar]
  20. Yamashita U., Hamaoka T., Takami T., Kitagawa M. Immune maturation of T lymphocytes: sequential changes in the functional specificity and apparent affinity of hapten-reactive helper T cells during an immune response. Cell Immunol. 1976 Mar 1;22(1):152–164. doi: 10.1016/0008-8749(76)90016-2. [DOI] [PubMed] [Google Scholar]
  21. Yutoku M., Grossberg A. L., Stout R., Herzenberg L. A., Pressman D. Further studies on Th-B, a cell surface antigenic determinant present on mouse B cells, plasma cells and immature thymocytes. Cell Immunol. 1976 Apr;23(1):140–157. doi: 10.1016/0008-8749(76)90178-7. [DOI] [PubMed] [Google Scholar]
  22. Yutoku M., Seno H., Watanabe S., Matsuoka Y., Kitagawa M. Quantitation of in vivo growth of plasmacytoma X5563 by immunoassay for its paraprotein with individual antigenic specificity. J Natl Cancer Inst. 1972 Nov;49(5):1395–1402. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES