Abstract
Class-specific plaque-forming cell (PFC) (gammaM, gamma1, gamma2, and gammaA) responses to type III pneumococcal polysaccharide (SSS-III) were studied in BALB/c x C57BL/6F1 (CBF1) mice with and without induction of an allogeneic effect. Gamma1, gamma2, and gammaA PFC were detected in two ways: (a) With the sequential development of the assay slides, first for direct (gammaM)PFC followed by incubation with class- specific antiimmunoglobulin and complement for the development of additional gamma1, gamma2, and gammaA PFC (gammaM-independent gamma1, gamma2, and gammaA PFC); and (b) by blocking gammaM PFC with goat anti- gammaM and simultaneously developing gamma1, gamma2, and gammaA PFC (total gamma1-, gamma2-, and gammaA-secreting PFC). The results showed that whereas gammaM PFC arose on the 3rd d after immunization, gamma1-, gamma2-, and gammaA-secreting PFC arose on the 4th to 5th d after immunization. They appeared in association with gammaM-secreting PFC because they were detected with the gammaM blocking method but not with the sequential method. By the 7th d most gamma1, gamma2, and gammaA PFC were detected by the sequential method as well, indicating that those antibodies were secreted independently of cells secreting gammaM. When the numbers of double-class-secreting PFC were evaluated on the 5th d, the following results were obtained: 83% of gammaM PFC were secreting either gamma1 (25%), gamma2 (55%), or gammaA (2%). We interpret these data as evidence for an antigen-driven class differentiation from gammaM to gammaA and from gammaM to gammaG in the majority of anti-SSS- III-secreting clones without T-cell help. When an allogeneic effect was provided by inoculation of parental BALB/c spleen cells together with antigen, the numbers of all classes of PFC were increased. Furthermore, the frequency of gammaM-gammaG (108%) or gammaM-gammaA (9%) double- class secretors was increased, and gammaM-independent gammaG and gammaA secretors were detected earlier, indicating an overall maturation- promoting effect. In addition, prolonged appearance of gammaA PFC was dependent on the allogeneic effect.
Full Text
The Full Text of this article is available as a PDF (672.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. H., Stashak P. W. Quantitative and qualitative studies on the primary antibody response to pneumococcal polysaccharides at ehe cellular level. J Immunol. 1969 Dec;103(6):1342–1348. [PubMed] [Google Scholar]
- Baker P. J., Barth R. F., Stashak P. W., Amsbaugh D. F. Enhancement of the antibody response to type 3 pneumococcal polysaccharide in mice treated with antilymphocyte serum. J Immunol. 1970 May;104(5):1313–1315. [PubMed] [Google Scholar]
- Baker P. J., Prescott B., Stashak P. W., Amsbaugh D. F. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. 3. Studies on the average avidity of the antibody produced by specific plaque-forming cells. J Immunol. 1971 Sep;107(3):719–724. [PubMed] [Google Scholar]
- Baker P. J., Reed N. D., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. I. Nature of regulatory cells. J Exp Med. 1973 Jun 1;137(6):1431–1441. doi: 10.1084/jem.137.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. I. Dose-response studies and the effect of prior immunization on the magnitude of the antibody response. Immunology. 1971 Apr;20(4):469–480. [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. II. Studies on the relative rate of antibody synthesis and release by antibody-producing cells. Immunology. 1971 Apr;20(4):481–492. [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Regulation of the antibody response to type 3 pneumococcal polysaccharide. IV. Role of suppressor T cells in the development of low-dose paralysis. J Immunol. 1974 Jun;112(6):2020–2027. [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Prescott B. Use of erythrocytes sensitized with purified pneumococcal polysaccharides for the assay of antibody and antibody-producing cells. Appl Microbiol. 1969 Mar;17(3):422–426. doi: 10.1128/am.17.3.422-426.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barthold D. R., Prescott B., Stashak P. W., Amsbaugh D. F., Baker P. J. Regulation of the antibody response to type 3 pneumococcal polysaccharide. 3. Role of regulatory T cells in the development of an IgG and IgA antibody response. J Immunol. 1974 Mar;112(3):1042–1050. [PubMed] [Google Scholar]
- Braley-Mullen H. Regulatory role of T cells in IgG antibody formation and immune memory to type III Pneumococcal polysaccharide. J Immunol. 1974 Dec;113(6):1909–1920. [PubMed] [Google Scholar]
- Byfield P., Christie G. H., Howard J. G. Alternative potentiating and inhibitory effects of GVH reaction on formation of antibodies against a thymus-independent polysaccharide (S3). J Immunol. 1973 Jul;111(1):72–84. [PubMed] [Google Scholar]
- Ivanyi J., Dresser D. W. Replica analysis of the class of antibodies produced by single cells. Clin Exp Immunol. 1970 Apr;6(4):493–501. [PMC free article] [PubMed] [Google Scholar]
- Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten antibody responses. 3. Stimulation of antibody synthesis and facilitation of hapten-specific secondary antibody responses by graft-versus-host reactions. J Exp Med. 1971 Feb 1;133(2):169–186. doi: 10.1084/jem.133.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krüger J., Gershon R. K. DNA synthetic response of thymocytes to a variety of antigens. J Immunol. 1972 Mar;108(3):581–585. [PubMed] [Google Scholar]
- Lawton A. R., 3rd, Asofsky R., Hylton M. B., Cooper M. D. Suppression of immunoglobulin class synthesis in mice. I. Effects of treatment with antibody to -chain. J Exp Med. 1972 Feb 1;135(2):277–297. doi: 10.1084/jem.135.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawton A. R., 3rd, Cooper M. D. Modification of B lymphocyte differentiation by anti-immunoglobulins. Contemp Top Immunobiol. 1974;3:193–225. doi: 10.1007/978-1-4684-3045-5_8. [DOI] [PubMed] [Google Scholar]
- Manning D. D., Jutila J. W. Immunosuppression of mice injected with heterologous anti-immunoglobulin heavy chain antisera. J Exp Med. 1972 Jun 1;135(6):1316–1333. doi: 10.1084/jem.135.6.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOSSAL G. J., SZENBERG A., ADA G. L., AUSTIN C. M. SINGLE CELL STUDIES ON 19S ANTIBODY PRODUCTION. J Exp Med. 1964 Mar 1;119:485–502. doi: 10.1084/jem.119.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordin A. A., Cosenza H., Sell S. Immunoglobulin classes of antibody-forming cells in mice. II. Class restriction of plaque-forming cells demonstrated by replica plating. J Immunol. 1970 Feb;104(2):495–501. [PubMed] [Google Scholar]
- Pierce C. W., Johnson B. M., Gershon H. E., Asofsky R. Immune responses in vitro. 3. Development of primary gamma-M, gamma-G, and gamma-A plaque-forming cell responses in mouse spleen cell cultures stimulated with heterologous erythrocytes. J Exp Med. 1971 Aug 1;134(2):395–416. doi: 10.1084/jem.134.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce C. W., Solliday S. M., Asofsky R. Immune responses in vitro. IV. Suppression of primary M, G, and A plaque-forming cell responses in mouse spleen cell cultures by class-specific antibody to mouse immunoglobulins. J Exp Med. 1972 Mar 1;135(3):675–697. doi: 10.1084/jem.135.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce C. W., Solliday S. M., Asofsky R. Immune responses in vitro. V. Suppression of M, G, and A plaque-forming cell responses in cultures of primed mouse spleen cells by class-specific antibody to mouse immunoglobulins. J Exp Med. 1972 Mar 1;135(3):698–710. doi: 10.1084/jem.135.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell S., Park A. B., Nordin A. A. Immunoglobulin classes of antibody-forming cells in mice. I. Localized hemolysis-in-agar plaque-forming cells belonging to five immunoglobulin classes. J Immunol. 1970 Feb;104(2):483–494. [PubMed] [Google Scholar]
- Taylor R. B., Wortis H. H. Thymus dependence of antibody response: variation with dose of antigen and class of antibody. Nature. 1968 Nov 30;220(5170):927–928. doi: 10.1038/220927a0. [DOI] [PubMed] [Google Scholar]
- Vitetta E. S., Grundke-Iqbal I., Holmes K. V., Uhr J. W. Cell surface immunoglobulin. VII. Synthesis, shedding, and secretion of immunoglobulin by lymphoid cells of germ-free mice. J Exp Med. 1974 Apr 1;139(4):862–876. doi: 10.1084/jem.139.4.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wecker E., Schimpl A., Hünig T., Kühn L. A T-cell -produced mediator substance active in the humoral immune response. Ann N Y Acad Sci. 1975 Feb 28;249:258–263. doi: 10.1111/j.1749-6632.1975.tb29073.x. [DOI] [PubMed] [Google Scholar]