Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 May 1;149(5):1260–1264. doi: 10.1084/jem.149.5.1260

Direct evidence that natural killer cells in nonimmune spleen cell populations prevent tumor growth in vivo

M Kasai, JC Leclerc, L McVay-Boudreau, FW Shen, H Cantor
PMCID: PMC2184872  PMID: 448287

Abstract

Relatively large numbers of nonimmune spleen cells do not protect against the local growth of two lymphomas. However, this heterogeneous population of splenic lymphocytes contains a subset of cells that efficiently protects against in vivo tumor growth. This cell population (cell-surface phenotype Thyl.2(-)Ig(-)Ly5.1(+)) represents less than 5 percent of the spleen cell population and is responsible for in vitro NK-mediated lysis. Although these studies clearly and directly demonstrate that Ly5(+) NK cells selected from a heterogeneous lymphoid population from nonimmune mice can protect syngeneic mice against local in vivo growth of two different types of tumor cells (in contrast to other lymphocyte sets within the spleen), they do not directly bear upon the role of NK cells in immunosurveillance. They do indicate that highly enriched Ig(-)Thyl(-)Ly5(+) cells, which account for virtually all in vitro NK activity, can retard tumor growth in vivo. It is difficult to ascribe all anti-tumor surveillance activity to NK cells, because they probably do not recirculate freely throughout the various organ systems of the body. Perhaps NK ceils may play a role in prevention of neoplastic growth within discrete anatomic compartments where there is rapid differentiation of stem cells to mature progeny (e.g., bone marrow, spleen, and portions of the gastrointestinal tract)and may normally act to regulate the growth and differentiation of non-neoplastic stem cells. Long-term observation of chimeric mice repopulated with bone marrow from congenic or mutant donors expressing very low or very high NK activity may help to answer these questions.

Full Text

The Full Text of this article is available as a PDF (319.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Greenberg A. H., Greene M. Non-adaptive rejection of small tumour inocula as a model of immune surveillance. Nature. 1976 Nov 25;264(5584):356–359. doi: 10.1038/264356a0. [DOI] [PubMed] [Google Scholar]
  2. Greenberg A. H., Playfair J. H. Spontaneously arising cytotoxicity to the P-815-Y mastocytoma in NZB mice. Clin Exp Immunol. 1974 Jan;16(1):99–109. [PMC free article] [PubMed] [Google Scholar]
  3. Haller O., Hansson M., Kiessling R., Wigzell H. Role of non-conventional natural killer cells in resistance against syngeneic tumour cells in vivo. Nature. 1977 Dec 15;270(5638):609–611. doi: 10.1038/270609a0. [DOI] [PubMed] [Google Scholar]
  4. Herberman R. B., Nunn M. E., Holden H. T., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975 Aug 15;16(2):230–239. doi: 10.1002/ijc.2910160205. [DOI] [PubMed] [Google Scholar]
  5. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  6. Kiessling R., Klein E., Pross H., Wigzell H. "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975 Feb;5(2):117–121. doi: 10.1002/eji.1830050209. [DOI] [PubMed] [Google Scholar]
  7. Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
  8. Kiessling R., Petranyi G., Kärre K., Jondal M., Tracey D., Wigzell H. Killer cells: a functional comparison between natural, immune T-cell and antibody-dependent in vitro systems. J Exp Med. 1976 Apr 1;143(4):772–780. doi: 10.1084/jem.143.4.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sato H., Boyse E. A., Aoki T., Iritani C., Old L. J. Leukemia-associated transplantation antigens related to murine leukemia virus. The X.1 system: immune response controlled by a locus linked to H-2. J Exp Med. 1973 Sep 1;138(3):593–606. doi: 10.1084/jem.138.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sendo F., Aoki T., Boyse E. A., Buafo C. K. Natural occurrence of lymphocytes showing cytotoxic activity to BALB/c radiation-induced leukemia RL male 1 cells. J Natl Cancer Inst. 1975 Sep;55(3):603–609. doi: 10.1093/jnci/55.3.603. [DOI] [PubMed] [Google Scholar]
  11. Stulting R. D., Berke G. Nature of lymphocyte-tumor interaction. A general method for cellular immunoabsorption. J Exp Med. 1973 Apr 1;137(4):932–942. doi: 10.1084/jem.137.4.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science. 1974 Feb 8;183(4124):534–536. doi: 10.1126/science.183.4124.534. [DOI] [PubMed] [Google Scholar]
  13. Wysocki L. J., Sato V. L. "Panning" for lymphocytes: a method for cell selection. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES