Abstract
Two sets of apparently conflicting data on the genes coding for the variable region are being accumulated. One suggests that the sets of nucleotides coding for the framework segments of immunoglobulin light and heavy (VL and VH) chains assort independently and are therefore germ-line minigenes which, together with sets of nucleotides coding for the complementarity-determining regions (CDR) or segments assemble to form complete variable (V)-region genes (15, 16, 33). The other, based on the findings with clones from 12-d-old embryo and adult mouse coding for V-regions, infer that the first three frameworks and the three complementarity-determining segments are already assembled as germ-line V-genes (17-21). It is now generally accepted that the J segment, which in the one instance sequenced (21) is made up of nucleotides coding for framework (FR)4 plus two residues of CDR3, is a minigene. An examination of sequences of human, mouse, and rabbit V-regions, assuming the latter hypothesis, indicates that individual framework sets would have to be present in many copies. The FR2 segment found in one human, 20 mice, and 13 rabbits would have to be present in at least 10/14 copies in the NZB, and 5/6 in the BALB/c mouse, and 12/13 in the rabbit. The X-ray crystallographic data show this region to be a loop, projecting out from the V-domain, capable of accommodating many substiutions and 12 and 8 alternative sequences for this FR2 segment have been found in mouse and rabbit VK chains with substitutions possible at 13 of the 15 positions. These alternative sequences occur much less frequently than the preserved FR2 segment. Thus, there is no basis in the protein structure to account for evolutionary stability of this FR2 segment if it occurs in so many copies in germ-line genes coding for residues 1-96, but its stability is easily explained if it were coded for by a separate germ-line minigene present as a single copy; the alternative forms could then have arisen by duplication and mutation of this minigene. Somatic assembly of the minigene segments for the three framework and three complementarity-determining segments during differentiation would account completely for our assortment data from which FR4 was inferred to be a minigene.
Full Text
The Full Text of this article is available as a PDF (855.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barstad P., Farnsworth V., Weigert M., Cohn M., Hood L. Mouse immunoglobulin heavy chains are coded by multiple germ line variable region genes. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4096–4100. doi: 10.1073/pnas.71.10.4096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernard O., Hozumi N., Tonegawa S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell. 1978 Dec;15(4):1133–1144. doi: 10.1016/0092-8674(78)90041-7. [DOI] [PubMed] [Google Scholar]
- Brack C., Hirama M., Lenhard-Schuller R., Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978 Sep;15(1):1–14. doi: 10.1016/0092-8674(78)90078-8. [DOI] [PubMed] [Google Scholar]
- Brandt D. C., Jaton J. C. Identical VL region sequences of two antibodies from two outbred rabbits exhibiting complete idiotypic cross-reactivity and probably the same antigen-binding site fine structure. J Immunol. 1978 Sep;121(3):1194–1198. [PubMed] [Google Scholar]
- Capra J. D., Kehoe J. M. Hypervariable regions, idiotypy, and the antibody-combining site. Adv Immunol. 1975;20:1–40. doi: 10.1016/s0065-2776(08)60205-9. [DOI] [PubMed] [Google Scholar]
- Capra J. D., Kunkel H. G. Amino acid sequence similarities in two human anti gamma globulin antibodies. Proc Natl Acad Sci U S A. 1970 Sep;67(1):87–92. doi: 10.1073/pnas.67.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. R., Padlan E. A., Segal D. M. Immunoglobulin structures at high resolution. Contemp Top Mol Immunol. 1975;4:127–153. doi: 10.1007/978-1-4615-8930-3_5. [DOI] [PubMed] [Google Scholar]
- Edmundson A. B., Ely K. R., Girling R. L., Abola E. E., Schiffer M., Westholm F. A., Fausch M. D., Deutsch H. F. Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline lambda-type Bence-Jones dimer. Biochemistry. 1974 Aug 27;13(18):3816–3827. doi: 10.1021/bi00715a031. [DOI] [PubMed] [Google Scholar]
- Epp O., Colman P., Fehlhammer H., Bode W., Schiffer M., Huber R., Palm W. Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI. Eur J Biochem. 1974 Jun 15;45(2):513–524. doi: 10.1111/j.1432-1033.1974.tb03576.x. [DOI] [PubMed] [Google Scholar]
- Huser H., Braun D. G. Rabbit variable kappa light chain regions: subgroups contain polypeptides encoded by multiple genes. Hoppe Seylers Z Physiol Chem. 1978 Nov;359(11):1473–1480. doi: 10.1515/bchm2.1978.359.2.1473. [DOI] [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T. Attempts to locate complementarity-determining residues in the variable positions of light and heavy chains. Ann N Y Acad Sci. 1971 Dec 31;190:382–393. doi: 10.1111/j.1749-6632.1971.tb13550.x. [DOI] [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T., Bilofsky H. Variable region genes for the immunoglobulin framework are assembled from small segments of DNA--a hypothesis. Proc Natl Acad Sci U S A. 1978 May;75(5):2429–2433. doi: 10.1073/pnas.75.5.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKean D. J., Bell M., Potter M. Mechanisms of antibody diversity: multiple genes encode structurally related mouse kappa variable regions. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3913–3917. doi: 10.1073/pnas.75.8.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milstein C. Linked groups of residues in immunoglobulin k chains. Nature. 1967 Oct 28;216(5113):330–332. doi: 10.1038/216330a0. [DOI] [PubMed] [Google Scholar]
- Niall H. D., Edman P. Two structurally distinct classes of kappa-chains in human immunoglobulins. Nature. 1967 Oct 21;216(5112):262–263. doi: 10.1038/216262a0. [DOI] [PubMed] [Google Scholar]
- Ohta T. Sequence variability of immunoglobulins considered from the standpoint of population genetics. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5108–5112. doi: 10.1073/pnas.75.10.5108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter M. Antigen-binding myeloma proteins of mice. Adv Immunol. 1977;25:141–211. [PubMed] [Google Scholar]
- Rabbitts T. H. A molecular hybridization approach for the determination of the immunoglobulin V-gene pool size. Immunol Rev. 1977;36:29–50. doi: 10.1111/j.1600-065x.1977.tb00381.x. [DOI] [PubMed] [Google Scholar]
- Raub W. F. The PROPHET system and resource sharing. Fed Proc. 1974 Dec;33(12):2390–2392. [PubMed] [Google Scholar]
- Schachter H., Michaels M. A., Tilley C. A., Crookston M. C., Crookston J. H. Qualitative differences in the N-acetyl-D-galactosaminyltransferases produced by human A1 and A2 genes. Proc Natl Acad Sci U S A. 1973 Jan;70(1):220–224. doi: 10.1073/pnas.70.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4298–4302. doi: 10.1073/pnas.71.11.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidman J. G., Leder A., Edgell M. H., Polsky F., Tilghman S. M., Tiemeier D. C., Leder P. Multiple related immunoglobulin variable-region genes identified by cloning and sequence analysis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3881–3885. doi: 10.1073/pnas.75.8.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonegawa S., Maxam A. M., Tizard R., Bernard O., Gilbert W. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1485–1489. doi: 10.1073/pnas.75.3.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valbuena O., Marcu K. B., Weigert M., Perry R. P. Multiplicity of germline genes specifying a group of related mouse kappa chains with implications for the generation of immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):780–784. doi: 10.1038/276780a0. [DOI] [PubMed] [Google Scholar]
- Weigert M., Gatmaitan L., Loh E., Schilling J., Hood L. Rearrangement of genetic information may produce immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):785–790. doi: 10.1038/276785a0. [DOI] [PubMed] [Google Scholar]
- Wu T. T., Kabat E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970 Aug 1;132(2):211–250. doi: 10.1084/jem.132.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]