Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Jun 1;149(6):1504–1518. doi: 10.1084/jem.149.6.1504

Origin, Kinetics, and characteristics of pulmonary macrophages in the normal steady state

PMCID: PMC2184895  PMID: 448291

Abstract

Pulmonary macrophages of mice in the steady state were isolated by lavage with PBS containing EDTA and subsequent enzymatic digestion of tissue with pronase and DNA-ase. By this method, the total pulmonary macrophage population was obtained in two cell suspensions, one with a pure population of pulmonary alveolar macrophages (PAM) and the other with a mixed population of pulmonary alveolar and pulmonary tissue macrophages (PTM). The morphological, cytochemical, and functional characteristics of both PAM and PTM were like those of mature tissue macrophages except for the presence of C3 receptors. These receptors were almost absent on PAM and present on a larger number of cells in the mixed population of PAM and PTM. The total pulmonary macrophage population of mice in the steady state is approximately equal to 2 x 10(6), of which about 93% are PAM and about 7% are PTM. In labeling experiments with 3H-thymidine, the low in vitro labeling indices (less than 3%) for both PAM and the mixture of PAM and PTM, showed that both are essentially nondividing cells. In vivo labeling studies showed an increase in the number of labeled macrophages that can only be attributed to labeled monocytes migrating into the lungs. Additional evidence was provided by a decrease in the labeling indices of pulmonary macrophages when mice were treated with hydrocortisone acetate, which causes a severe monocytopenia, thus preventing monocyte influx into the lungs. Confirmation of the bone marrow origin was obtained in mice labeled after x-irradiation with partial bone marrow shielding: labeled pulmonary macrophages were found in the exposed lungs. In all experiments, the labeling indices were identical in the two macrophage populations isolated. These results show that the influx of monocytes is the source of cell renewal for the pulmonary macrophages. No indications for an interstitial division or maturation compartment in the lung were found. Quantitation of the efflux of labeled monocytes from the blood, and the number of labeled pulmonary macrophages, showed that in the steady state about 15% of the monocytes leaving the circulation become pulmonary macrophages and that the turnover time of pulmonary macrophages is approximately equal to 27 d.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowden D. H., Adamson I. Y., Grantham W. G., Wyatt J. P. Origin of the lung macrophage. Evidence derived from radiation injury. Arch Pathol. 1969 Nov;88(5):540–546. [PubMed] [Google Scholar]
  2. Bowden D. H., Adamson I. Y. The pulmonary interstitial cell as immediate precursor of the alveolar macrophage. Am J Pathol. 1972 Sep;68(3):521–537. [PMC free article] [PubMed] [Google Scholar]
  3. Brain J. D. Free cells in the lungs. Some aspects of their role, quantitation, and regulation. Arch Intern Med. 1970 Sep;126(3):477–487. doi: 10.1001/archinte.126.3.477. [DOI] [PubMed] [Google Scholar]
  4. Brunstetter M. A., Hardie J. A., Schiff R., Lewis J. P., Cross C. E. The origin of pulmonary alveolar macrophages. Studies of stem cells using the Es-2 marker of mice. Arch Intern Med. 1971 Jun;127(6):1064–1068. [PubMed] [Google Scholar]
  5. Daughaday C. C., Douglas S. D. Membrane receptors on rabbit and human pulmonary alveolar macrophages. J Reticuloendothel Soc. 1976 Jan;19(1):37–45. [PubMed] [Google Scholar]
  6. Godleski J. J., Brain J. D. The origin of alveolar macrophages in mouse radiation chimeras. J Exp Med. 1972 Sep 1;136(3):630–643. doi: 10.1084/jem.136.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golde D. W., Byers L. A., Finley T. N. Proliferative capacity of human alveolar macrophage. Nature. 1974 Feb 8;247(5440):373–375. doi: 10.1038/247373a0. [DOI] [PubMed] [Google Scholar]
  8. Goldstein E., Lippert W., Warshauer D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest. 1974 Sep;54(3):519–528. doi: 10.1172/JCI107788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green G. M. Alveolobronchiolar transport mechanisms. Arch Intern Med. 1973 Jan;131(1):109–114. [PubMed] [Google Scholar]
  10. Hunninghake G. W., Fauci A. S. Immunological reactivity of the lung. I. A guinea pig model for the study of pulmonary mononuclear cell subpopulations. Cell Immunol. 1976 Sep;26(1):89–97. doi: 10.1016/0008-8749(76)90350-6. [DOI] [PubMed] [Google Scholar]
  11. Kapanci Y., Assimacopoulos A., Irle C., Zwahlen A., Gabbiani G. "Contractile interstitial cells" in pulmonary alveolar septa: a possible regulator of ventilation-perfusion ratio? Ultrastructural, immunofluorescence, and in vitro studies. J Cell Biol. 1974 Feb;60(2):375–392. doi: 10.1083/jcb.60.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lauweryns J. M., Baert J. H. Alveolar clearance and the role of the pulmonary lymphatics. Am Rev Respir Dis. 1977 Apr;115(4):625–683. doi: 10.1164/arrd.1977.115.4.625. [DOI] [PubMed] [Google Scholar]
  13. Lin H. S., Kuhn C., Kuo T. Clonal growth of hamster free alveolar cells in soft agar. J Exp Med. 1975 Oct 1;142(4):877–886. doi: 10.1084/jem.142.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MACKLIN C. C. The pulmonary alveolar mucoid film and the pneumonocytes. Lancet. 1954 May 29;266(6822):1099–1104. doi: 10.1016/s0140-6736(54)92154-6. [DOI] [PubMed] [Google Scholar]
  15. NACHLAS M. M., WALKER D. G., SELIGMAN A. M. The histochemical localization of triphosphopyridine nucleotide diaphorase. J Biophys Biochem Cytol. 1958 Jul 25;4(4):467–474. doi: 10.1083/jcb.4.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pinkett M. O., Cowdrey C. R., Nowell P. C. Mixed hematopoietic and pulmonary origin of 'alveolar macrophages' as demonstrated by chromosome markers. Am J Pathol. 1966 May;48(5):859–867. [PMC free article] [PubMed] [Google Scholar]
  17. Reynolds H. Y., Atkinson J. P., Newball H. H., Frank M. M. Receptors for immunoglobulin and complement on human alveolar macrophages. J Immunol. 1975 Jun;114(6):1813–1819. [PubMed] [Google Scholar]
  18. Sedaghat B., Masse R., Nenot J. C., Lafuma J., Martin J. C. Evaluation de la population totale des macrophages alvéolaires chez le rat. C R Acad Sci Hebd Seances Acad Sci D. 1971 Jul 12;273(2):229–232. [PubMed] [Google Scholar]
  19. Slonecker C. E., Lim W. C. Effects of hydrocortisone on the cells in an acute inflammatory exudate. Lab Invest. 1972 Jul;27(1):123–128. [PubMed] [Google Scholar]
  20. Soderland S. C., Naum Y. Letter: Growth of pulmonary alveolar macrophages in vitro. Nature. 1973 Sep 21;245(5421):150–152. doi: 10.1038/245150a0. [DOI] [PubMed] [Google Scholar]
  21. Sorokin S. P., Brain J. D. Pathways of clearance in mouse lungs exposed to iron oxide aerosols. Anat Rec. 1975 Mar;181(3):581–625. doi: 10.1002/ar.1091810304. [DOI] [PubMed] [Google Scholar]
  22. Spritzer A. A., Watson J. A., Auld J. A., Guetthoff M. A. Pulmonary macrophage clearance. The hourly rates of transfer of pulmonary macrophages to the oropharynx of the rat. Arch Environ Health. 1968 Nov;17(5):726–730. doi: 10.1080/00039896.1968.10665312. [DOI] [PubMed] [Google Scholar]
  23. Thomas E. D., Ramberg R. E., Sale G. E., Sparkes R. S., Golde D. W. Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science. 1976 Jun 4;192(4243):1016–1018. doi: 10.1126/science.775638. [DOI] [PubMed] [Google Scholar]
  24. Thompson J., van Furth R. The effect of glucocorticosteroids on the kinetics of mononuclear phagocytes. J Exp Med. 1970 Mar 1;131(3):429–442. doi: 10.1084/jem.131.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thompson J., van Furth R. The effect of glucocorticosteroids on the proliferation and kinetics of promonocytes and monocytes of the bone marrow. J Exp Med. 1973 Jan 1;137(1):10–21. doi: 10.1084/jem.137.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ungar J., Wilson G. R. Monocytes as a Source of Alveolar Phagocytes. Am J Pathol. 1935 Jul;11(4):681–692.5. [PMC free article] [PubMed] [Google Scholar]
  27. Van Der Meer J. W., Leijh P. C., Van Den Barselaar, Van Furth R. Functions of phagocytic cells in chronic mucocutaneous candidiasis. Br Med J. 1978 Jan 21;1(6106):147–148. doi: 10.1136/bmj.1.6106.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Furth R., Diesselhoff-den Dulk M. C., Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med. 1973 Dec 1;138(6):1314–1330. doi: 10.1084/jem.138.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Velde J. T., Burkhardt R., Kleiverda K., Leenheers-Binnendijk L., Sommerfeld W. Methyl-methacrylate as an embedding medium in histopathology. Histopathology. 1977 Sep;1(5):319–330. doi: 10.1111/j.1365-2559.1977.tb01671.x. [DOI] [PubMed] [Google Scholar]
  30. Virolainen M. Hematopoietic origin of macrophages as studied by chromosome markers in mice. J Exp Med. 1968 May 1;127(5):943–952. doi: 10.1084/jem.127.5.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warr G. A., Martin R. R. Immune receptors of human alveolar macrophages: comparison between cigarette smokers and nonsmokers. J Reticuloendothel Soc. 1977 Sep;22(3):181–187. [PubMed] [Google Scholar]
  32. Weibel E. R. Morphological basis of alveolar-capillary gas exchange. Physiol Rev. 1973 Apr;53(2):419–495. doi: 10.1152/physrev.1973.53.2.419. [DOI] [PubMed] [Google Scholar]
  33. Weiden P. L., Storb R., Tsoi M. S. Marrow origin of canine alveolar macrophages. J Reticuloendothel Soc. 1975 Jun;17(6):342–345. [PubMed] [Google Scholar]
  34. van Furth R., Cohn Z. A., Hirsch J. G., Humphrey J. H., Spector W. G., Langevoort H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845–852. [PMC free article] [PubMed] [Google Scholar]
  35. van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Furth R., Diesselhoff-Den Dulk M. M. The kinetics of promonocytes and monocytes in the bone marrow. J Exp Med. 1970 Oct 1;132(4):813–828. doi: 10.1084/jem.132.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Furth R. Macrophage activity and clinical immunology. Origin and kinetics of mononuclear phagocytes. Ann N Y Acad Sci. 1976;278:161–175. doi: 10.1111/j.1749-6632.1976.tb47027.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES