Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Jun 1;149(6):1314–1325. doi: 10.1084/jem.149.6.1314

The influence of steroid hormone metabolites on the in vitro development of erythroid colonies derived from human bone marrow

PMCID: PMC2184901  PMID: 448289

Abstract

Certain C19 and C21 steroid metabolites, when incubated with normal human bone marrow cells in culture, increased the number of erythroid colonies in the presence of erythropoietin. Among a number of pairs of C5 epimeric steroids tested, most 5beta (A:B cis) steroids stimulated the growth of both early erythroid progenitor cells (BFU-E) and late erythroid progenitor cells (CFU-E), whereas only a few 5alpha-(A:B trans) steroids stimulated the growth of CFU-E. No 5alpha-compounds of six pairs of steroids studied were found to stimulate BFU-E formation. This structure-activity relationship conforms with that previously observed in studies of steroid induction of ALA-synthase in avian embryo liver cells and hemoglobin synthesis in the cultured avian blastoderm. When human bone marrow cells were preincubated with the steroids for 2 d, followed by incubation with erythropoietin, only the 5 beta-compounds stimulated the growth of BFU-E. Similarly, when addition of steroids was delayed in relation to erythropoietin in the culture, only the 5 beta-derivative of a pair of C5 epimeric compounds displayed an enhancing effect on the growth of BFU-E. This effect required that the steroid addition be made no later than 48 h after initiation of the culture. These data demonstrate that certain natural steroid metabolites significantly stimulate erythropoiesis in normal human bone marrow cells in culture. They also indicate that 5 beta- compounds are more stimulatory than their 5 alpha-epimers, and they suggest that these 5 beta-steroids act preferentially on very primitive erythroid progenitor cells, probably on BFU-E.

Full Text

The Full Text of this article is available as a PDF (753.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besa E. C., Gorshein D., Hait W. A., Gardner F. H. Effective erythropoiesis induced by 5beta-pregnane-3beta-hydroxy-20-one in squirrel monkeys. J Clin Invest. 1973 Sep;52(9):2278–2282. doi: 10.1172/JCI107415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besa E. C., Wolff S. M., Dale D. C., Gardner F. H. Aetiocholanolone and prednisolone therapy in patients with severe bone-marrow failure. Lancet. 1977 Apr 2;1(8014):728–730. doi: 10.1016/s0140-6736(77)92170-5. [DOI] [PubMed] [Google Scholar]
  3. Fisher J. W., Adamson J. W., Camiscoli J. F., Fried W., Gordon A. S., Schooley J., Zanjani E. Cooperative erythropoietic assay of several steroid metabolites in polycythemic mice. Steroids. 1977 Dec;30(6):833–845. doi: 10.1016/s0039-128x(77)80029-9. [DOI] [PubMed] [Google Scholar]
  4. GARDNER F. H., PRINGLE J. C., Jr Androgens and erythropoiesis. I. Preliminary clinical observations. Arch Intern Med. 1961 Jun;107:846–862. doi: 10.1001/archinte.1961.03620060046007. [DOI] [PubMed] [Google Scholar]
  5. GARDNER F. H., PRINGLE J. C., Jr Androgens and erythropoiesis. II. Treatment of myeloid metaplasia. N Engl J Med. 1961 Jan 19;264:103–111. doi: 10.1056/NEJM196101192640301. [DOI] [PubMed] [Google Scholar]
  6. Gordon A. S., Zanjani E. D., Levere R. D., Kappas A. Stimulation of mammalian erythropoiesis by 5beta-H steroid metabolites. Proc Natl Acad Sci U S A. 1970 Apr;65(4):919–924. doi: 10.1073/pnas.65.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorshein D., Gardner F. H. Erythropoietic activity of steroid metabolites in mice. Proc Natl Acad Sci U S A. 1970 Mar;65(3):564–568. doi: 10.1073/pnas.65.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granick S., Kappas A. Steroid control of porphyrin and heme biosynthesis: a new biological function of steroid hormone metabolites. Proc Natl Acad Sci U S A. 1967 May;57(5):1463–1467. doi: 10.1073/pnas.57.5.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Granick S., Kappas A. Steroid induction of porphyrin synthesis in liver cell culture. I. Structural basis and possible physiological role in the control of heme formation. J Biol Chem. 1967 Oct 25;242(20):4587–4593. [PubMed] [Google Scholar]
  10. Gregory C. J., Eaves A. C. Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood. 1977 Jun;49(6):855–864. [PubMed] [Google Scholar]
  11. Irving R. A., Mainwaring I. P., Spooner P. M. The regulation of haemoglobin synthesis in cultured chick blastoderms by steroids related to 5beta-androstane. Biochem J. 1976 Jan 15;154(1):81–93. doi: 10.1042/bj1540081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iscove N. N., Sieber F., Winterhalter K. H. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974 Apr;83(2):309–320. doi: 10.1002/jcp.1040830218. [DOI] [PubMed] [Google Scholar]
  13. Iscove N. N. The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet. 1977 Jul;10(4):323–334. doi: 10.1111/j.1365-2184.1977.tb00300.x. [DOI] [PubMed] [Google Scholar]
  14. Javitt N. B., Rifkind A., Kappan A. Porphyrin-heme pathway: regulation by intermediates in bile acid synthesis. Science. 1973 Nov 23;182(4114):841–842. doi: 10.1126/science.182.4114.841. [DOI] [PubMed] [Google Scholar]
  15. KAPPAS A., PALMER R. H. Selected aspects of steroid pharmacology. Pharmacol Rev. 1963 Mar;15:123–167. [PubMed] [Google Scholar]
  16. Kappas A., Song C. S., Levere R. D., Sachson R. A., Granick S. THE INDUCTION OF delta-AMINOLEVULINIC ACID SYNTHETASE in vivo IN CHICK EMBRYO LIVER BY NATURAL STEROIDS. Proc Natl Acad Sci U S A. 1968 Oct;61(2):509–513. doi: 10.1073/pnas.61.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levere R. D., Gidari A. S. Steroid metabolites and the control of hemoglobin synthesis. Bull N Y Acad Med. 1974 May;50(5):563–575. [PMC free article] [PubMed] [Google Scholar]
  18. Levere R. D., Kappas A., Granick S. Stimulation of hemoglobin synthesis in chick blastoderms by certain 5beta androstane and 5beta pregnane steroids. Proc Natl Acad Sci U S A. 1967 Sep;58(3):985–990. doi: 10.1073/pnas.58.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mizoguchi H., Levere R. D. Enhancement of heme and globin synthesis in cultured human marrow by certain 5 -H steroid metabolites. J Exp Med. 1971 Dec 1;134(6):1501–1512. doi: 10.1084/jem.134.6.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Necheles T. F., Rai U. S. Studies on the control of hemoglobin synthesis: the in vitro stimulating effect of a 5-beta-H steroid metabolite on heme formation in human bone marrow cells. Blood. 1969 Sep;34(3):380–384. [PubMed] [Google Scholar]
  21. Ogawa M., MacEachern M. D., Avila L. Human marrow erythropoiesis in culture: II. Heterogeneity in the morphology, time course of colony formation, and sedimentation velocities of the colony-forming cells. Am J Hematol. 1977;3:29–36. doi: 10.1002/ajh.2830030104. [DOI] [PubMed] [Google Scholar]
  22. Sassa S., Granick S., Bickers D. R., Bradlow H. L., Kappas A. A microassay for uroporphyrinogen I synthase, one of three abnormal enzyme activities in acute intermittent porphyria, and its application to the study of the genetics of this disease. Proc Natl Acad Sci U S A. 1974 Mar;71(3):732–736. doi: 10.1073/pnas.71.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sassa S., Kappas A., Bernstein S. E., Alvares A. P. Heme biosynthesis and drug metabolism in mice with hereditary hemolytic anemia. Heme oxygenase induction as an adaptive response for maintaining cytochrome P-450 in chronic hemolysis. J Biol Chem. 1979 Feb 10;254(3):729–735. [PubMed] [Google Scholar]
  24. Sassa S., Kappas A. Induction of aminolevulinate synthase and porphyrins in cultured liver cells maintained in chemically defined medium. Permissive effects of hormones on induction process. J Biol Chem. 1977 Apr 10;252(7):2428–2436. [PubMed] [Google Scholar]
  25. Sassa S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J Exp Med. 1976 Feb 1;143(2):305–315. doi: 10.1084/jem.143.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sassa S., Zalar G. L., Kappas A. Studies in porphyria. VII. Induction of uroporphyrinogen-I synthase and expression of the gene defect of acute intermittent porphyria in mitogen-stimulated human lymphocytes. J Clin Invest. 1978 Feb;61(2):499–508. doi: 10.1172/JCI108961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Singer J. W., Adamson J. W. Steroids and hematopoiesis. II. The effect of steroids on in vitro erythroid colony growth: evidence for different target cells for different classes of steroids. J Cell Physiol. 1976 Jun;88(2):135–143. doi: 10.1002/jcp.1040880203. [DOI] [PubMed] [Google Scholar]
  28. Singer J. W., Samuels A. I., Adamson J. W. Steroids and hematopoiesis. I. The effect of steroids on in vitro erythroid colony growth: structure/activity relationships. J Cell Physiol. 1976 Jun;88(2):127–134. doi: 10.1002/jcp.1040880202. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES