Abstract
Enzymatic digestion with pronase and DNAase was used to isolate Kupffer cells from mouse liver. The characteristics of these cells were found to be similar to those of peritoneal macrophages, except that in the initial suspension the percentage of Kupffer cells with Fc receptors was low, C receptors were absent and the ingestion of opsenized bacteria was very poor, because of the effect of pronase on the cell membrane. After 24 h incubation in vitro all these characteristics return. The in vitro and 1 h-pulse [(3)H]thymidine labeling of the Kupffer cells is low (0.8 and 1 percent, respectively) indicating that in essence these cells do not divide. It was also shown that the small percentage of in vitro labeled Kupffer cells was recently derived from the circulation. After an intravenous injection of zymosan the in vitro labeling index of the Kupffer cells increased 16-fold, but it was proven that these dividing cells were immature mononuclear phagocytes very recently recruited from the bone marrow. The labeling of Kupffer cells aider one or four injections of [(3)H]thymidine reached a peak of 10.4 percent at 48 h or 24.1 percent at 60 h, respectively, indicating that these cells are derived from labeled monocytes. Further evidence for this conclusion was obtained by the absence of an increase of labeled Kupffer cells during treatment with hydrocortisone, which causes a monocytopenia during which no circulating monocytes are available to migrate to the tissues. Labeling studies in animals X-irradiated with hind-limb shielding gave a Kupffer cell labeling index of 5-10 percent of the normal values, which confirms their bone marrow origin. A quantitative study on the production of labeled monocytes in the bone marrow and their transit through the circulation showed that in the normal steady state at least 56.4 percent of the monocytes leaving the circulation become Kupffer cells. Considering the Kupffer cells as kinetically homogeneous this gives a mean turnover time of the total population of Kupffer cells of 21 days.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell E. B., Shand F. L. A search for lymphocyte-derived macrophages during xenogeneic graft-verus-host reactions induced by rat thoracic duct cells. Immunology. 1972 Apr;22(4):537–547. [PMC free article] [PubMed] [Google Scholar]
- Bissell D. M., Hammaker L., Schmid R. Liver sinusoidal cells. Identification of a subpopulation for erythrocyte catabolism. J Cell Biol. 1972 Jul;54(1):107–119. doi: 10.1083/jcb.54.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blouin A., Bolender R. P., Weibel E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb;72(2):441–455. doi: 10.1083/jcb.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boak J. L., Christie G. H., Ford W. L., Howard J. G. Pathways in the development of liver macrophages: alternative precursors contained in populations of lymphocytes and bone-marrow cells. Proc R Soc Lond B Biol Sci. 1968 Feb 27;169(1016):307–327. doi: 10.1098/rspb.1968.0013. [DOI] [PubMed] [Google Scholar]
- EDWARDS J. L., KLEIN R. E. Cell renewal in adult mouse tissues. Am J Pathol. 1961 Apr;38:437–453. [PMC free article] [PubMed] [Google Scholar]
- Fahimi H. D. The fine structural localization of endogenous and exogenous peroxidase activity in Kupffer cells of rat liver. J Cell Biol. 1970 Oct;47(1):247–262. doi: 10.1083/jcb.47.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARVEY J. S. Separation and in vitro culture of cells from liver tissue. Nature. 1961 Sep 2;191:972–974. doi: 10.1038/191972a0. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Huber H., Douglas S. D., Fudenberg H. H. The IgG receptor: an immunological marker for the characterization of mononuclear cells. Immunology. 1969 Jul;17(1):7–21. [PMC free article] [PubMed] [Google Scholar]
- Iype P. T., Bhargava P. M., Tasker A. D. Some aspects of the chemical and cellular composition of adult rat liver. Exp Cell Res. 1965 Nov;40(2):233–251. doi: 10.1016/0014-4827(65)90257-0. [DOI] [PubMed] [Google Scholar]
- KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
- KELLY L. S., BROWN B. A., DOBSON E. L. Cell division and phagocytic activity in liver reticulo-endothelial cells. Proc Soc Exp Biol Med. 1962 Jul;110:555–559. doi: 10.3181/00379727-110-27578. [DOI] [PubMed] [Google Scholar]
- Kinsky R. G., Christie G. H., Elson J., Howard J. G. Extra-hepatic derivation of Kupffer cells during oestrogenic stimulation of parabiosed mice. Br J Exp Pathol. 1969 Oct;50(5):438–447. [PMC free article] [PubMed] [Google Scholar]
- Lloyd R. S., Triger D. R. Studies on hepatic uptake of antigen. III. Studies of liver macrophage function in normal rats and following carbon tetrachloride administration. Immunology. 1975 Aug;29(2):253–263. [PMC free article] [PubMed] [Google Scholar]
- Mills D. M., Zucker-Franklin D. Electron microscopic study of isolated Kupffer cells. Am J Pathol. 1969 Feb;54(2):147–166. [PMC free article] [PubMed] [Google Scholar]
- Munthe-Kaas A. C., Berg T., Seglen P. O., Seljelid R. Mass isolation and culture of rat kupffer cells. J Exp Med. 1975 Jan 1;141(1):1–10. doi: 10.1084/jem.141.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munthe-Kaas A. C., Berg T., Seljelid R. Distribution of lysosomal enzymes in different types of rat liver cells. Exp Cell Res. 1976 Apr;99(1):146–154. doi: 10.1016/0014-4827(76)90689-3. [DOI] [PubMed] [Google Scholar]
- Munthe-Kaas A. C. Phagocytosis in rat Kupffer cells in vitro. Exp Cell Res. 1976 May;99(2):319–327. doi: 10.1016/0014-4827(76)90589-9. [DOI] [PubMed] [Google Scholar]
- North R. J. The mitotic potential of fixed phagocytes in the liver as revealed during the development of cellular immunity. J Exp Med. 1969 Aug 1;130(2):315–326. doi: 10.1084/jem.130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J Exp Med. 1970 Sep 1;132(3):521–534. doi: 10.1084/jem.132.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisano J. C., Filkins J. P., Di Luzio N. R. Phagocytic and metabolic activities of isolated rat Kupffer cells. Proc Soc Exp Biol Med. 1968 Jul;128(3):917–922. doi: 10.3181/00379727-128-33157. [DOI] [PubMed] [Google Scholar]
- Portmann B., Schindler A. M., Murray-Lyon I. M., Williams R. Histological sexing of a reticulum cell sarcoma arising after liver transplantation. Gastroenterology. 1976 Jan;70(1):82–84. [PubMed] [Google Scholar]
- Roser B. The distribution of intravenously injected Kupffer cellsin the mouse. J Reticuloendothel Soc. 1968 Oct;5(5):455–471. [PubMed] [Google Scholar]
- Rous P., Beard J. W. SELECTION WITH THE MAGNET AND CULTIVATION OF RETICULO-ENDOTHELIAL CELLS (KUPFFER CELLS). J Exp Med. 1934 Apr 30;59(5):577–591. doi: 10.1084/jem.59.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaba J. K., Patrick R. S., McGee J. O. Collagen synthesis by mesenchymal cells isolated from normal and acutely-damaged mouse liver. Br J Exp Pathol. 1973 Feb;54(1):110–116. [PMC free article] [PubMed] [Google Scholar]
- Shand F. L., Bell E. B. Studies on the distribution of macrophages derived from rat bone marrow cells in xenogeneic radiation chimaeras. Immunology. 1972 Apr;22(4):549–556. [PMC free article] [PubMed] [Google Scholar]
- Souhami R. L., Bradfield J. W. The recovery of hepatic phagocytosis after blockade of Kupffer cells. J Reticuloendothel Soc. 1974 Aug;16(2):75–86. [PubMed] [Google Scholar]
- Thompson J., van Furth R. The effect of glucocorticosteroids on the kinetics of mononuclear phagocytes. J Exp Med. 1970 Mar 1;131(3):429–442. doi: 10.1084/jem.131.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J., van Furth R. The effect of glucocorticosteroids on the proliferation and kinetics of promonocytes and monocytes of the bone marrow. J Exp Med. 1973 Jan 1;137(1):10–21. doi: 10.1084/jem.137.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Furth R., Diesselhoff-den Dulk M. C., Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med. 1973 Dec 1;138(6):1314–1330. doi: 10.1084/jem.138.6.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volkman A. Disparity in origin of mononuclear phagocyte populations. J Reticuloendothel Soc. 1976 Apr;19(4):249–268. [PubMed] [Google Scholar]
- Warr G. W., Sljivić V. S. Origin and division of liver macrophages during stimulation of the mononuclear phagocyte system. Cell Tissue Kinet. 1974 Nov;7(6):559–565. doi: 10.1111/j.1365-2184.1974.tb00439.x. [DOI] [PubMed] [Google Scholar]
- Widmann J. J., Fahimi H. D. Proliferation of mononuclear phagocytes (Kupffer cells) and endothelial cells in regenerating rat liver. A light and electron microscopic cytochemical study. Am J Pathol. 1975 Sep;80(3):349–366. [PMC free article] [PubMed] [Google Scholar]
- Wisse E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J Ultrastruct Res. 1974 Mar;46(3):393–426. doi: 10.1016/s0022-5320(74)90064-1. [DOI] [PubMed] [Google Scholar]
- Zschiesche W. Alkylating anticancer agents and phagocytosis. II. Effects of alkylating agents on numerical distribution and histochemistry of reticuloendothelial cells. J Reticuloendothel Soc. 1972 Jul;12(1):16–28. [PubMed] [Google Scholar]
- van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Furth R., Diesselhoff-Den Dulk M. M. The kinetics of promonocytes and monocytes in the bone marrow. J Exp Med. 1970 Oct 1;132(4):813–828. doi: 10.1084/jem.132.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Furth R., Hirsch J. G., Fedorko M. E. Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes, and macrophages. J Exp Med. 1970 Oct 1;132(4):794–812. doi: 10.1084/jem.132.4.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Waarde D., Hulsing-Hesselink E., van Furth R. A serum facted by newborn calf serum. Cell Tissue Kinet. 1976 Jan;9(1):51–63. [PubMed] [Google Scholar]