Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1978 Aug 1;148(2):490–506. doi: 10.1084/jem.148.2.490

Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase

PMCID: PMC2184952  PMID: 212502

Abstract

Ethylene formation from the thioethers, beta-methylthiopropionaldehyde (methional) and 2-keto-4-thiomethylbutyric acid by phagocytosing polymorphonuclear leukocytes (PMNs) was found to be largely dependent on myeloperoxidase (MPO). Conversion was less than 10% of normal when MPO-deficient PMNs were employed; formation by normal PMNs was inhibited by the peroxidase inhibitors, azide, and cyanide, and a model system consisting of MPO, H2O2, chloride (or bromide) and EDTA was found which shared many of the properties of the predominant PMN system. MPO-independent mechanisms of ethylene formation were also identified. Ethylene formation from methional by phagocytosing eosinophils and by H2O2 in the presence or absence of catalase was stimulated by azide. The presence of MPO-independent, azide-stimulable systems in the PMN preparations was suggested by the azide stimulation of ethylene formation from methional when MPO-deficient leukocytes were employed. Ethylene formation by dye-sensitized photooxidation was also demonstrated and evidence obtained for the involvement of singlet oxygen (1O2). These findings are discussed in relation to the participation of H2O2, hydroxyl radicals, the superoxide anion and 1O2 in the formation of ethylene by PMNs and by the MPO model system.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agro' A. F., Giovagnoli C., De Sole P., Calabrese L., Rotilio G., Mondovi' B. Erythrocuprein and singlet oxygen. FEBS Lett. 1972 Mar 15;21(2):183–185. doi: 10.1016/0014-5793(72)80132-7. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beauchamp C., Fridovich I. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem. 1970 Sep 25;245(18):4641–4646. [PubMed] [Google Scholar]
  4. Bors W., Lengfelder E., Saran M., Fuchs C., Michel C. Reactions of oxygen radical species with methional: a pulse radiolysis study. Biochem Biophys Res Commun. 1976 May 3;70(1):81–87. doi: 10.1016/0006-291x(76)91111-6. [DOI] [PubMed] [Google Scholar]
  5. Goda K., Kimura T., Thayer A. L., Kees K., Schaap A. P. Singlet molecular oxygen in biological systems: non-quenching of singlet oxygen-mediated chemiluminescence by superoxide dismutase. Biochem Biophys Res Commun. 1974 Jun 4;58(3):660–666. doi: 10.1016/s0006-291x(74)80469-9. [DOI] [PubMed] [Google Scholar]
  6. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975 Dec 2;14(24):5299–5303. doi: 10.1021/bi00695a011. [DOI] [PubMed] [Google Scholar]
  7. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
  8. Hodgson E. K., Fridovich I. The production of superoxide radical during the decomposition of potassium peroxochromate(V). Biochemistry. 1974 Aug 27;13(18):3811–3815. doi: 10.1021/bi00715a030. [DOI] [PubMed] [Google Scholar]
  9. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KEILIN D., HARTREE E. F. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J. 1955 Jun;60(2):310–325. doi: 10.1042/bj0600310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keilin D., Hartree E. F. Properties of azide-catalase. Biochem J. 1945;39(2):148–157. doi: 10.1042/bj0390148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klebanoff S. J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol. 1975 Apr;12(2):117–142. [PubMed] [Google Scholar]
  13. Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
  14. Klebanoff S. J., Pincus S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 1971 Oct;50(10):2226–2229. doi: 10.1172/JCI106718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehrer R. I., Cline M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488. doi: 10.1172/JCI106114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McClune G. J., Fee J. A. Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solution. FEBS Lett. 1976 Sep 1;67(3):294–298. doi: 10.1016/0014-5793(76)80550-9. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  18. Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
  19. Paschen W., Weser U. Letter: Singlet oxygen decontaminating activity of erythrocuprein (superoxide dismutase). Biochim Biophys Acta. 1973 Nov 15;327(1):217–222. doi: 10.1016/0005-2744(73)90120-4. [DOI] [PubMed] [Google Scholar]
  20. Paschen W., Weser U. Problems concerning the biochemical action of superoxide dismutase (erythrocuprein). Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):727–737. doi: 10.1515/bchm2.1975.356.s1.727. [DOI] [PubMed] [Google Scholar]
  21. Richter C., Wendel A., Weser U., Azzi A. Inhibition by superoxide dismutase of linoleic acid peroxidation induced by lipoxidase. FEBS Lett. 1975 Mar 1;51(1):300–303. doi: 10.1016/0014-5793(75)80912-4. [DOI] [PubMed] [Google Scholar]
  22. Rosen H., Klebanoff S. J. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest. 1976 Jul;58(1):50–60. doi: 10.1172/JCI108458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosen H., Klebanoff S. J. Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system. J Biol Chem. 1977 Jul 25;252(14):4803–4810. [PubMed] [Google Scholar]
  24. THEORELL H., EHRENBERG A. Magnetic properties of some peroxide compounds of myoglobin, peroxidase and catalase. Arch Biochem Biophys. 1952 Dec;41(2):442–461. [PubMed] [Google Scholar]
  25. Tauber A. I., Babior B. M. Evidence for hydroxyl radical production by human neutrophils. J Clin Invest. 1977 Aug;60(2):374–379. doi: 10.1172/JCI108786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weiss S. J., King G. W., LoBuglio A. F. Evidence for hydroxyl radical generation by human Monocytes. J Clin Invest. 1977 Aug;60(2):370–373. doi: 10.1172/JCI108785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss S. J., Rustagi P. K., LoBuglio A. F. Human granulocyte generation of hydroxyl radical. J Exp Med. 1978 Feb 1;147(2):316–323. doi: 10.1084/jem.147.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weser U., Paschen W., Younes M. Singlet oxygen and superoxide dismutase (cuprein). Biochem Biophys Res Commun. 1975 Sep 16;66(2):769–777. doi: 10.1016/0006-291x(75)90576-8. [DOI] [PubMed] [Google Scholar]
  29. Yang S. F. Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase. Arch Biochem Biophys. 1967 Nov;122(2):481–487. doi: 10.1016/0003-9861(67)90222-6. [DOI] [PubMed] [Google Scholar]
  30. Yang S. F. Further studies on ethylene formation from alpha-keto-gamma-methylthiobutyric acid or beta-methylthiopropionaldehyde by peroxidase in the presence of sulfite and oxygen. J Biol Chem. 1969 Aug 25;244(16):4360–4365. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES