Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1978 Oct 1;148(4):1052–1067. doi: 10.1084/jem.148.4.1052

Identification of lactoferrin as the granulocyte-derived inhibitor of colony-stimulating activity production

PMCID: PMC2185015  PMID: 308988

Abstract

Lactoferrin (LF), the iron-binding protein present in the specific granules of mature granulocytes has been identified as colony inhibitory factor (CIF) which suppresses granulocyte--macrophage colony stimulating activity (CSA) production by monocytes and macrophages in vitro and rebound granulopoiesis in vivo. Separation of LF and CIF by isoelectric focusing confirmed that the regions of inhibitory activity corresponded in both to a pH of congruent to 6.5. In addition, the purified immunoglobulin fraction of rabbit anti-human LF antiserum, but not rabbit anti-transferrin (TF), inactivated the capacity of LF and CIF to inhibit CSA production, an effect blocked by prior incubation of anti-LF with neutralizing concentrations of LF. Suppression of CSA production correlated with the iron-saturation of LF; APO-LF (depleted of iron) was only active concentrations greater than 10(-7) M, native LF (8% iron saturated) was active at 10(-15) M, and fully iron- saturated LF inhibited at 10(-17) M. Suppression of CSA production occurred within a 1/2-h preincubation period with human blood monocytes but was reversed by bacterial lipopolysaccharide (LPS). This reversal was dependent on the relative concentrations of LF to LPS. Serum TF, a biochemically similar iron-binding protein which is antigenically distinct from LF, was only minimally active at concentrations greater than 10(-6) M. LF did not inhibit exogenously stimulated human granylocyte and macrophage colony-forming cells or erythropoietin- dependent human or murine erythroid colony- or erythroid burst-forming cells. Microgram quantities of LF acted in vivo to inhibit rebound granulopoiesis and CSA production in CD1 and C57Bl/6 mice pretreated with cyclophosphamide. These results strongly implicate LF as a physiological regulator of granulopoiesis.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263–265. doi: 10.1126/science.327545. [DOI] [PubMed] [Google Scholar]
  2. Baggiolini M., De Duve C., Masson P. L., Heremans J. F. Association of lactoferrin with specific granules in rabbit heterophil leukocytes. J Exp Med. 1970 Mar 1;131(3):559–570. doi: 10.1084/jem.131.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezkorovainy A., Zschocke R. H. Structure and function of transferrins. I. Physical, chemical, and iron-binding properties. Arzneimittelforschung. 1974 Apr;24(4):476–485. [PubMed] [Google Scholar]
  4. Broxmeyer H. E., Baker F. L., Galbraith P. R. In vitro regulation of granulopoiesis in human leukemia: application of an assay for colony-inhibiting cells. Blood. 1976 Mar;47(3):389–402. [PubMed] [Google Scholar]
  5. Broxmeyer H. E., Grossbard E., Jacobsen N., Moore M. A. Evidence for a proliferative advantage of human leukemia colony-forming cells in vitro. J Natl Cancer Inst. 1978 Mar;60(3):513–521. doi: 10.1093/jnci/60.3.513. [DOI] [PubMed] [Google Scholar]
  6. Broxmeyer H. E. Inhibition in vivo of mouse granulopoiesis by cell-free activity derived from human polymorphonuclear neutrophils. Blood. 1978 May;51(5):889–901. [PubMed] [Google Scholar]
  7. Broxmeyer H. E., Jacobsen N., Kurland J., Mendelsohn N., Moore A. S. In vitro suppression of normal granulocytic stem cells by inhibitory activity derived from human leukemia cells. J Natl Cancer Inst. 1978 Mar;60(3):497–511. doi: 10.1093/jnci/60.3.497. [DOI] [PubMed] [Google Scholar]
  8. Broxmeyer H. E., Ralph P. In vitro regulation of a mouse myelomonocytic leukemia line adapted to culture. Cancer Res. 1977 Oct;37(10):3578–3584. [PubMed] [Google Scholar]
  9. Bullen J. J., Rogers H. J., Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972 Jan 8;1(5792):69–75. doi: 10.1136/bmj.1.5792.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burgess A. W., Wilson E. M., Metcalf D. Stimulation by human placental conditioned medium of hemopoietic colony formation by human marrow cells. Blood. 1977 Apr;49(4):573–583. [PubMed] [Google Scholar]
  11. De Sousa M. Lymphoid cell positioning: a new proposal for the mechanism of control of lymphoid cell migration. Symp Soc Exp Biol. 1978;32:393–410. [PubMed] [Google Scholar]
  12. GOT R. FRACTIONNEMENT DES PROT'EINES DU LACTOS'ERUM HUMAIN. Clin Chim Acta. 1965 May;11:432–441. doi: 10.1016/0009-8981(65)90190-7. [DOI] [PubMed] [Google Scholar]
  13. Iscove N. N., Sieber F., Winterhalter K. H. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974 Apr;83(2):309–320. doi: 10.1002/jcp.1040830218. [DOI] [PubMed] [Google Scholar]
  14. Kirkpatrick C. H., Green I., Rich R. R., Schade A. L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis. 1971 Dec;124(6):539–544. doi: 10.1093/infdis/124.6.539. [DOI] [PubMed] [Google Scholar]
  15. Kochan I., Kvach J. T., Wiles T. I. Virulence-associated acquisition of iron in mammalian serum by Escherichia coli. J Infect Dis. 1977 Apr;135(4):623–632. doi: 10.1093/infdis/135.4.623. [DOI] [PubMed] [Google Scholar]
  16. Leffell M. S., Spitznagel J. K. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun. 1972 Nov;6(5):761–765. doi: 10.1128/iai.6.5.761-765.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leffell M. S., Spitznagel J. K. Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads. Infect Immun. 1975 Oct;12(4):813–820. doi: 10.1128/iai.12.4.813-820.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MONTREUIL J., MULLET S. [Isolation of lactosiderophilin from human milk]. C R Hebd Seances Acad Sci. 1960 Feb 29;250:1736–1737. [PubMed] [Google Scholar]
  19. Mason D. Y. Intracellular lysozyme and lactoferrin in myeloproliferative disorders. J Clin Pathol. 1977 Jun;30(6):541–546. doi: 10.1136/jcp.30.6.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Masson P. L., Heremans J. F. Lactoferrin in milk from different species. Comp Biochem Physiol B. 1971 May 15;39(1):119–129. doi: 10.1016/0305-0491(71)90258-6. [DOI] [PubMed] [Google Scholar]
  21. Masson P. L., Heremans J. F. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem. 1968 Dec 5;6(4):579–584. doi: 10.1111/j.1432-1033.1968.tb00484.x. [DOI] [PubMed] [Google Scholar]
  22. Masson P. L., Heremans J. F., Prignot J. J., Wauters G. Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax. 1966 Nov;21(6):538–544. doi: 10.1136/thx.21.6.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643–658. doi: 10.1084/jem.130.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mendelsohn N., Eger R. R., Broxmeyer H. E., Moore M. A. Isolation of a granulocyte colony inhibitory factor derived from human polymorphonuclear neutrophils. Biochim Biophys Acta. 1978 Mar 28;533(1):238–247. doi: 10.1016/0005-2795(78)90567-6. [DOI] [PubMed] [Google Scholar]
  25. Olofsson T., Olsson I., Venge P. Myeloperoxidase and lactoferrin of blood neutrophils and plasma in chronic granulocytic leukaemia. Scand J Haematol. 1977 Feb;18(2):113–120. doi: 10.1111/j.1600-0609.1977.tb02080.x. [DOI] [PubMed] [Google Scholar]
  26. Oram J. D., Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta. 1968 Dec 23;170(2):351–365. doi: 10.1016/0304-4165(68)90015-9. [DOI] [PubMed] [Google Scholar]
  27. Querinjean P., Masson P. L., Heremans J. F. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem. 1971 Jun 11;20(3):420–425. doi: 10.1111/j.1432-1033.1971.tb01408.x. [DOI] [PubMed] [Google Scholar]
  28. Ralph P., Moore M. A., Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976 Jun 1;143(6):1528–1533. doi: 10.1084/jem.143.6.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reiter B., Brock J. H., Steel E. D. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistant strain of E. coli. Immunology. 1975 Jan;28(1):83–95. [PMC free article] [PubMed] [Google Scholar]
  30. Robinson W. A., Entringer M. A., Bolin R. W., Stonington O. G., Jr Bacterial stimulation and granulocyte inhibition of granulopoietic factor production. N Engl J Med. 1977 Nov 24;297(21):1129–1134. doi: 10.1056/NEJM197711242972101. [DOI] [PubMed] [Google Scholar]
  31. Rümke P., Visser D., Kwa H. G., Hart A. A. Radio-immuno assay of lactoferrin in blood plasma of breast cancer patients, lactating and normal women; prevention of false high levels caused by leakage from neutrophile leucocytes in vitro. Folia Med Neerl. 1971 Aug-Sep;14(4):156–168. [PubMed] [Google Scholar]
  32. Segars F. M., Kinkade J. M., Jr Radioimmunoassay for murine lactoferrin, a protein marker of myeloid and mammary epithelial secretory cell differentiation. J Immunol Methods. 1977;14(1):1–14. doi: 10.1016/s0022-1759(97)90014-4. [DOI] [PubMed] [Google Scholar]
  33. Van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med. 1974 Oct 1;140(4):1068–1084. doi: 10.1084/jem.140.4.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Snick J. L., Masson P. L. The binding of human lactoferrin to mouse peritoneal cells. J Exp Med. 1976 Dec 1;144(6):1568–1580. doi: 10.1084/jem.144.6.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winchester R. J., Ross G. D., Jarowski C. I., Wang C. Y., Halper J., Broxmeyer H. E. Expression of Ia-like antigen molecules on human granulocytes during early phases of differentiation. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4012–4016. doi: 10.1073/pnas.74.9.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. ZUCKER-FRANKLIN D., HIRSCH J. G. ELECTRON MICROSCOPE STUDIES ON THE DEGRANULATION OF RABBIT PERITONEAL LEUKOCYTES DURING PHAGOCYTOSIS. J Exp Med. 1964 Oct 1;120:569–576. doi: 10.1084/jem.120.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. de Sousa M., Smithyman A., Tan C. Suggested models of ecotaxopathy in lymphoreticular malignancy. A role for iron-binding proteins in the control of lymphoid cell migration. Am J Pathol. 1978 Feb;90(2):497–520. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES