Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1978 Dec 1;148(6):1468–1477. doi: 10.1084/jem.148.6.1468

Monoclonal origin of B lymphocyte colony-forming cells in spleen colonies formed by multipotential hemopoietic stem cells

PK Lala, GR Johnson
PMCID: PMC2185094  PMID: 309918

Abstract

Spleen colonies produced by transplanting lethally irradiated mice with either 12 day fetal liver or adult bone marrow cells were found to contain B- lymphocyte colony-forming cells (BL-CFC) . The proportion of BL-CFC positive spleen colonies did not increase substantially between 8 and 14 days after transplantation, the range being 18-45 percent. However, the absolute number of BL-CFC per spleen colony varied considerably (between 1 and 10,318), although the majority of colonies contained less than 200 BL-CFC. Irrespective of the time after transplantation, smaller spleen colonies were found to have a higher frequency of BL-CFC than larger spleen colonies. To determine the possible clonal origin of BL-CFC from spleen colony- forming unit (CFU-S), CBA mice were injected with equal numbers of CBA and CBA T(6)/T(6) fetal liver or adult bone marrow cells. Analysis of 7-15-day spleen colonies demonstrated that 90 percent were either exclusively T(6) positive or T(6) negative and approximately equal numbers ofboth colony types were observed. B-lymphocyte colonies were grown and successfully karyotyped from 19 spleen colonies. When compared with the original spleen colony karyotype the B-lymphocyte colony cells karyotype was identical in all 19 cases. In 3 of the 19 colonies analyzed a mixture of T(6) positive and T(6) negative karyotypes was present and identical proportions of the karyotypes were present in the pooled B-lymphocyte colony cells and spleen colony cells. The data indicate that the B-lymphocyte colony-forming cells detected in spleen colonies are genuine members of the hemopoietic clone derived from the initiating hemopoietic stem cell (CFU-S).

Full Text

The Full Text of this article is available as a PDF (610.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S., Miller R. G., Phillips R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med. 1977 Jun 1;145(6):1567–1579. doi: 10.1084/jem.145.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen M. G., Schooley J. C. A study on the clonal nature of spleen colonies using chromosome markers. Transplantation. 1968 Jan;6(1):121–126. doi: 10.1097/00007890-196801000-00012. [DOI] [PubMed] [Google Scholar]
  3. Edwards G. E., Miller R. G., Phillips R. A. Differentiation of rosette-forming cells from myeloid stem cells. J Immunol. 1970 Sep;105(3):719–729. [PubMed] [Google Scholar]
  4. Johnson G. R., Metcalf D., Wilson J. W. Development of B-lymphocyte colony-forming cells in foetal mouse tissues. Immunology. 1976 Jun;30(6):907–914. [PMC free article] [PubMed] [Google Scholar]
  5. Metcalf D., Nossal G. J., Warner N. L., Miller J. F., Mandel T. E., Layton J. E., Gutman G. A. Growth of B-lymphocyte colonies in vitro. J Exp Med. 1975 Dec 1;142(6):1534–1549. doi: 10.1084/jem.142.6.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nowell P. C., Hirsch B. E., Fox D. H., Wilson D. B. Evidence for the existence of multipotential lympho-hematopoietic stem cells in adult rat. J Cell Physiol. 1970 Apr;75(2):151–158. doi: 10.1002/jcp.1040750203. [DOI] [PubMed] [Google Scholar]
  7. Owen J. J., Wright D. E., Habu S., Raff M. C., Cooper M. D. Studies on the generation of B lymphocytes in fetal liver and bone marrow. J Immunol. 1977 Jun;118(6):2067–2072. [PubMed] [Google Scholar]
  8. ROTHFELS K. H., SIMINOVITCH L. An air-drying technique for flattening chromosomes in mammalian oells grown in vitro. Stain Technol. 1958 Mar;33(2):73–77. doi: 10.3109/10520295809111827. [DOI] [PubMed] [Google Scholar]
  9. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  10. Trentin J., Wolf N., Cheng V., Fahlberg W., Weiss D., Bonhag R. Antibody production by mice repopulated with limited numbers of clones of lymphoid cell precursors. J Immunol. 1967 Jun;98(6):1326–1337. [PubMed] [Google Scholar]
  11. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol. 1967 Apr;69(2):177–184. doi: 10.1002/jcp.1040690208. [DOI] [PubMed] [Google Scholar]
  12. Wu A. M., Till J. E., Siminovitch L., McCulloch E. A. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med. 1968 Mar 1;127(3):455–464. doi: 10.1084/jem.127.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yung L. L., Wyn-Evans T. C., Diener E. Ontogeny of the murine immune system: development of antigen recognition and immune responsiveness. Eur J Immunol. 1973 Apr;3(4):224–228. doi: 10.1002/eji.1830030409. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES