Abstract
The incorporation of uracil into the pyrimidine ribonucleotide pools of Escherichia coli is strongly restricted under stringent conditions. Previously, we have suggested that this inhibition can be explained by the allosteric properties of uracil phosphoribosyltransferase. It has been proposed that this enzyme performs the uptake of uracil into the cell by transporting it across the cytoplasmic membrane, with the stimultaenous formation of UMP. To test this hypothesis it would be helpful to have mutants with changed regulation of uracil uptake, and in the present work, a method is introduced for the selection of such mutants. This method is based on phenotypic suppression of amber mutations by 5-fluorouracil (5FU). Mutants were isolated in an arginine-requiring strain of E. coli carrying an amber mutation in argI, the ornithine transcarbamylase gene. To facilitate the phenotypic rescue of this defective gene, mutants which overproduced ornithine transcarbamylase mRNA were isolated as a first step. The absence of exogenously added arginine causes stringent conditions, and phenotypic rescue by 5FU is, thus, prevented, unless the 5FU uptake mechanism is mutationally changed in such a manner that the drug is taken up into the cell. Three mutants in which the growth could be supported by 5FU in the absence of arginine were isolated. Two of them had acquired an increased ability to take up uracil under stringent conditions.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
- Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
- Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edlin G., Neuhard J. Regulation of nucleoside triphosphate pools in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):225–230. doi: 10.1016/0022-2836(67)90328-2. [DOI] [PubMed] [Google Scholar]
- Fast R., Sköld O. Biochemical mechanism of uracil uptake regulation in Escherichia coli B. Allosteric effects on uracil phosphoribosyltransferase under stringent conditions. J Biol Chem. 1977 Nov 10;252(21):7620–7624. [PubMed] [Google Scholar]
- Fast R., Sköld O. Pyrimidine-ribonucleotide pools and their turnover in phage T4-infected Escherichia coli cells. Eur J Biochem. 1973 Sep 21;38(1):40–45. doi: 10.1111/j.1432-1033.1973.tb03030.x. [DOI] [PubMed] [Google Scholar]
- GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
- GORINI L., KATAJA E. PHENOTYPIC REPAIR BY STREPTOMYCIN OF DEFECTIVE GENOTYPES IN E. COLI. Proc Natl Acad Sci U S A. 1964 Mar;51:487–493. doi: 10.1073/pnas.51.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORINI L. Regulation en retour (feedback control) de la synthèse de l'arginine chez Escherichia coli. Bull Soc Chim Biol (Paris) 1958;40(12):1939–1952. [PubMed] [Google Scholar]
- Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Cashel M. The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activities and purine uptake in isolated membrane vesicles by guanosine tetraphosphate. J Biol Chem. 1972 Nov 10;247(21):7067–7072. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells. J Biol Chem. 1971 Sep 10;246(17):5312–5320. [PubMed] [Google Scholar]
- Jacoby G. A., Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J Mol Biol. 1969 Jan 14;39(1):73–87. doi: 10.1016/0022-2836(69)90334-9. [DOI] [PubMed] [Google Scholar]
- Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
- Linder C. H., Fast R. Regulation of early mRNA synthesis after bacteriophage T4 infection of Escherichia coli. J Virol. 1975 Sep;16(3):463–469. doi: 10.1128/jvi.16.3.463-469.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molloy A., Finch L. R. Uridine-5'-monophosphate pyrophosphorylase activity from Escherichia coli. FEBS Lett. 1969 Nov 12;5(3):211–213. doi: 10.1016/0014-5793(69)80334-0. [DOI] [PubMed] [Google Scholar]
- Neuhard J., Thomassen E. Turnover of the deoxyribonucleoside triphosphates in Escherichia coli 15 T during thymine starvation. Eur J Biochem. 1971 May 11;20(1):36–43. doi: 10.1111/j.1432-1033.1971.tb01359.x. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P. Radioisotope uptake as a measure of synthesis of messenger RNA. Science. 1967 Dec 1;158(3805):1186–1188. doi: 10.1126/science.158.3805.1186. [DOI] [PubMed] [Google Scholar]
- Rosen B., Rothman F., Weigert M. G. Miscoding caused by 5-fluorouracil. J Mol Biol. 1969 Sep 14;44(2):363–375. doi: 10.1016/0022-2836(69)90181-8. [DOI] [PubMed] [Google Scholar]
