Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Dec;136(3):1058–1069. doi: 10.1128/jb.136.3.1058-1069.1978

Incorporation of 32Pi into nucleotides, polyphosphates, and other acid-soluble compounds by Myxococcus xanthus during myxospore formation.

P Y Maeba, R Shipman
PMCID: PMC218542  PMID: 102632

Abstract

When glycerol was used to induce myxospore formation in Myxococcu xanthus in the presence of 32Pi, the label was incorporated into a variety of acid-soluble compounds. Incorporation into ribonucleotides was approximately fivefold greater than in vegetative cells or noninducible mutants grown in glycerol. The label was also incorporated into some unknown compounds and material tentatively identified as guanosine tetraphosphate. Marked accumulation into polyphosphates, which were present mainly in culture supernatants, occurred relatively late during myxospore formation. The kinetics of accumulation of some of these compounds and their distribution into acid-soluble cell extracts and culture supernatants are described and compared with those in vegetative cells and noninducible mutants.

Full text

PDF
1058

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon K., Rosenberg E. Ribonucleic acid synthesis during morphogenesis in Myxococcus xanthus. J Bacteriol. 1967 Dec;94(6):1883–1889. doi: 10.1128/jb.94.6.1883-1889.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandhorst B., Fromson D. Lack of accumulation of ppGpp in sea urchin embryos. Dev Biol. 1976 Feb;48(2):458–460. doi: 10.1016/0012-1606(76)90107-x. [DOI] [PubMed] [Google Scholar]
  3. Burchard R. P., Parish J. H. Mutants of Myxococcus xanthus insensitive to glycerol-induced myxospore formation. Arch Microbiol. 1975 Aug 28;104(3):289–292. doi: 10.1007/BF00447339. [DOI] [PubMed] [Google Scholar]
  4. Cashel M., Gallant J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature. 1969 Mar 1;221(5183):838–841. doi: 10.1038/221838a0. [DOI] [PubMed] [Google Scholar]
  5. Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
  6. Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
  7. Chow C. T., Takahashi I. Acid-soluble nucleotides in an asporogenous mutant of Bacillus subtilis. J Bacteriol. 1972 Mar;109(3):1175–1180. doi: 10.1128/jb.109.3.1175-1180.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DWORKIN M., GIBSON S. M. A SYSTEM FOR STUDYING MICROBIAL MORPHOGENESIS: RAPID FORMATION OF MICROCYSTS IN MYXOCOCCUS XANTHUS. Science. 1964 Oct 9;146(3641):243–244. doi: 10.1126/science.146.3641.243. [DOI] [PubMed] [Google Scholar]
  9. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Filer D., Kindler S. H., Rosenberg E. Myxospore coat synthesis in Myxococcus xanthus: enzymes associated with uridine 5'-diphosphate-N-acetylgalactosamine formation during myxospore development. J Bacteriol. 1977 Sep;131(3):745–750. doi: 10.1128/jb.131.3.745-750.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallant J., Shell L., Bittner R. A novel nucleotide implicated in the response of E. coli to energy source downshift. Cell. 1976 Jan;7(1):75–84. doi: 10.1016/0092-8674(76)90257-9. [DOI] [PubMed] [Google Scholar]
  12. Griffin J. B., Davidian N. M., Penniall R. Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J Biol Chem. 1965 Nov;240(11):4427–4434. [PubMed] [Google Scholar]
  13. HAROLD F. M., SYLVAN S. ACCUMULATION OF INORGANIC POLYPHOSPHATE IN AEROBACTER AEROGENES. II. ENVIRONMENTAL CONTROL AND THE ROLE OF SULFUR COMPOUNDS. J Bacteriol. 1963 Aug;86:222–231. doi: 10.1128/jb.86.2.222-231.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hildebrandt A., Sauer H. W. Transcription of ribosomal RNA in the life cycle of Physarum may be regulated by a specific nucleolar initiation inhibitor. Biochem Biophys Res Commun. 1977 Jan 24;74(2):466–472. doi: 10.1016/0006-291x(77)90327-8. [DOI] [PubMed] [Google Scholar]
  15. Lazzarini R. A., Dahlberg A. E. The control of ribonucleic acid synthesis during amino acid deprivation in Escherichia coli. J Biol Chem. 1971 Jan 25;246(2):420–429. [PubMed] [Google Scholar]
  16. Loewen P. C. Novel nucleotides from E. coli isolated and partially characterized. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1210–1218. doi: 10.1016/0006-291x(76)91031-7. [DOI] [PubMed] [Google Scholar]
  17. Ludwig J. R., 2nd, Oliver S. G., McLaughlin C. S. The effect of amino acids on growth and phosphate metabolism in a prototrophic yeast strain. Biochem Biophys Res Commun. 1977 Nov 7;79(1):16–23. doi: 10.1016/0006-291x(77)90054-7. [DOI] [PubMed] [Google Scholar]
  18. McNaughton D. R., Klassen G. R., LéJohn H. B. Phosphorylated guanosine derivatives of eukaryotes: regulation of DNA-dependent RNA polymerases I, II, and III in fungal development. Biochem Biophys Res Commun. 1975 Sep 16;66(2):468–474. doi: 10.1016/0006-291x(75)90534-3. [DOI] [PubMed] [Google Scholar]
  19. Okano P., Bacon K., Rosenberg E. Ribonucleic acid synthesis during microcyst formation in Myxococcus xanthus: characterization by deoxyribonucleic acid-ribonucleic acid hybridization. J Bacteriol. 1970 Oct;104(1):275–282. doi: 10.1128/jb.104.1.275-282.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pao C. C., Paietta J., Gallant J. A. Synthesis of guanosine tetraphosphate (magic spot I) in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1977 Jan 10;74(1):314–322. doi: 10.1016/0006-291x(77)91410-3. [DOI] [PubMed] [Google Scholar]
  21. Ramsey W. S., Dworkin M. Stable messenger ribonucleic acid and germination of Myxococcus xanthus microcysts. J Bacteriol. 1970 Feb;101(2):531–540. doi: 10.1128/jb.101.2.531-540.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rhaese H. J., Dichtelmüller H., Grade R. Studies on the control of development. Accumulation of guanosine tetraphosphate and pentaphosphate in response to inhibition of protein synthesis in Bacillus subtilis. Eur J Biochem. 1975 Aug 15;56(2):385–392. doi: 10.1111/j.1432-1033.1975.tb02244.x. [DOI] [PubMed] [Google Scholar]
  23. Rhaese H. J., Grade R., Dichtelmüller H. Studies on the control of development. Correlation of initiucleotides in Bacillus subtilis. Eur J Biochem. 1976 Apr 15;64(1):205–213. doi: 10.1111/j.1432-1033.1976.tb10289.x. [DOI] [PubMed] [Google Scholar]
  24. STREHLER B. L., TOTTER J. R. Determination of ATP and related compounds: firefly luminescence and other methods. Methods Biochem Anal. 1954;1:341–356. doi: 10.1002/9780470110171.ch13. [DOI] [PubMed] [Google Scholar]
  25. Shively J. M. Inclusion bodies of prokaryotes. Annu Rev Microbiol. 1974;28(0):167–187. doi: 10.1146/annurev.mi.28.100174.001123. [DOI] [PubMed] [Google Scholar]
  26. Singh R. P., Setlow B., Setlow P. Levels of small molecules and enzymes in the mother cell compartment and the forespore of sporulating Bacillus megaterium. J Bacteriol. 1977 Jun;130(3):1130–1138. doi: 10.1128/jb.130.3.1130-1138.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sutherland I. W. Novel surface polymer changes in development of Myxococcus spp. Nature. 1976 Jan 1;259(5538):46–47. doi: 10.1038/259046a0. [DOI] [PubMed] [Google Scholar]
  28. Terry K. R., Hooper A. B. Polyphosphate and orthophosphate content of Nitrosomonas europaea as a function of growth. J Bacteriol. 1970 Jul;103(1):199–206. doi: 10.1128/jb.103.1.199-206.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Voelz H., Voelz U., Ortigoza R. O. The "polyphosphate overplus" phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Arch Mikrobiol. 1966 May 9;53(4):371–388. doi: 10.1007/BF00409874. [DOI] [PubMed] [Google Scholar]
  30. Wireman J. W., Dworkin M. Morphogenesis and developmental interactions in myxobacteria. Science. 1975 Aug 15;189(4202):516–523. doi: 10.1126/science.806967. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES