Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Aug 1;150(2):322–337. doi: 10.1084/jem.150.2.322

Rejection of first-set skin allografts in man. the microvasculature is the critical target of the immune response

PMCID: PMC2185628  PMID: 379265

Abstract

Recent reports of microvascular injury in delayed hypersensitivity skin reactions prompted us to reexamine the pathogenesis of first-set skin allograft rejection in man using morphologic techniques that allowed both extensive vessel sampling and unequivocal evaluation of microvascular endothelium. We here report that widespread microvascular damage is a characteristic, early consequence of the cellular immune response to first-set human skin allografts and is qualitatively similar to, but substantially more extensive than, that occurring in delayed hypersensitivity reactions. Microvascular damage in invariably preceded significant epithelial necrosis and affected initially and primarily those venules, arterioles, and small veins enveloped by lymphocytes. Vessels of both the allograft itself and the underlying graft bed (recipient tissue) were equally affected. These data suggest that endothelial cells of the microvasculature are the critical target of the immune response in first-set vascularized skin allograft rejection in man and that rejection can be attributed largely to ischemic infarction resulting from extensive microvascular damage. Other mechanisms, such as direct cellular contacts between infiltrating lymphocytes and epithelium, apparently played only a minor role. The findings presented here indicate that the rejection of first-set vascularized skin allografts, though induced by immunologically specific mechanisms, is primarily effected by final pathways that are relatively nonspecific and that may cause damage to both foreign and host vessels and cells. Rather than contradicting studies demonstrating the exquisite specificity of allograft rejection in other systems, these findings provide a further example of the heterogeneity of the cellular immune response. Recognition of the critical role of immunologically mediated microvascular injury may prove important both for an understanding of the biology of allograft rejection and for strategies aimed at prolonging allograft survival.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos D. B., Bashir H., Boyle W., MacQueen M., Tiilikainen A. A simple micro cytotoxicity test. Transplantation. 1969 Mar;7(3):220–223. doi: 10.1097/00007890-196903000-00023. [DOI] [PubMed] [Google Scholar]
  2. Anderson N. D., Wyllie R. G., Shaker I. J. Pathogenesis of vascular injury in rejecting rat renal allografts. Johns Hopkins Med J. 1977 Sep;141(3):135–147. [PubMed] [Google Scholar]
  3. Arnason B. G., Fuller T. C., Lehrich J. R., Wray S. H. Histocompatibility types and measles antibodies in multiple sclerosis and optic neuritis. J Neurol Sci. 1974 Aug;22(4):419–428. doi: 10.1016/0022-510x(74)90078-1. [DOI] [PubMed] [Google Scholar]
  4. BILLINGHAM R. E., SILVERS W. K. Further studies on the phenomenon of pigment spread in guinea pigs' skin. Ann N Y Acad Sci. 1963 Feb 15;100:348–363. doi: 10.1111/j.1749-6632.1963.tb57130.x. [DOI] [PubMed] [Google Scholar]
  5. Bhan A. K., Reinisch C. L., Levey R. H., McCluskey R. T., Schlossman S. F. T-cell migration into allografts. J Exp Med. 1975 May 1;141(5):1210–1215. doi: 10.1084/jem.141.5.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billingham R. E., Silvers W. K. Studies on the migratory behavior of melanocytes in guinea pig skin. J Exp Med. 1970 Jan 1;131(1):101–117. doi: 10.1084/jem.131.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CONVERSE J. M., RAPAPORT F. T. The vascularization of skin autografts and homografts; an experimental study in man. Ann Surg. 1956 Mar;143(3):306–315. doi: 10.1097/00000658-195603000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  9. Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dvorak A. M., Hammond M. E., Dvorak H. F., Karnovsky M. J. Loss of cell surface material from peritoneal exudate cells associated with lymphocyte-mediated inhibition of macrophage migration from capillary tubes. Lab Invest. 1972 Dec;27(6):561–574. [PubMed] [Google Scholar]
  11. Dvorak A. M., Mihm M. C., Jr, Dvorak H. F. Degranulation of basophilic leukocytes in allergic contact dermatitis reactions in man. J Immunol. 1976 Mar;116(3):687–695. [PubMed] [Google Scholar]
  12. Dvorak A. M., Mihm M. C., Jr, Dvorak H. F. Morphology of delayed-type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cells. Lab Invest. 1976 Feb;34(2):179–191. [PubMed] [Google Scholar]
  13. Dvorak H. F., Mihm M. C., Jr, Dvorak A. M., Johnson R. A., Manseau E. J., Morgan E., Colvin R. B. Morphology of delayed type hypersensitivity reactions in man. I. Quantitative description of the inflammatory response. Lab Invest. 1974 Aug;31(2):111–130. [PubMed] [Google Scholar]
  14. Dvorak H. F. Role of the basophilic leukocyte in allograft rejection. J Immunol. 1971 Jan;106(1):279–281. [PubMed] [Google Scholar]
  15. Gale R. P., Zighelboim J. Polymorphonuclear leukocytes in antibody-dependent cellular cytotoxicity. J Immunol. 1975 Mar;114(3):1047–1051. [PubMed] [Google Scholar]
  16. HENRY L., MARSHALL D. C., FRIEDMAN E. A., DAMMIN G. J., MERRILL J. P. The rejection of skin homografts in the normal human subject. II. Histological findings. J Clin Invest. 1962 Mar;41:420–446. doi: 10.1172/JCI104496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HENRY L., MARSHALL D. C., FRIEDMAN E. A., GOLDSTEIN D. P., DAMMIN G. J. A histological study of the human skin graft. Am J Pathol. 1961 Sep;39:317–332. [PMC free article] [PubMed] [Google Scholar]
  18. Hall B. M., Dorsch S., Roser B. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first-set rejection of heart grafts. J Exp Med. 1978 Oct 1;148(4):878–889. doi: 10.1084/jem.148.4.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KLEIN E., KLEIN G. Detection of an allelic difference at a single gene locus in a small fraction of a large tumour-cell population. Nature. 1956 Dec 22;178(4547):1389–1391. doi: 10.1038/1781389a0. [DOI] [PubMed] [Google Scholar]
  20. KOUNTZ S. L., WILLIAMS M. A., WILLIAMS P. L., KAPROS C., DEMPSTER W. J. MECHANISM OF REJECTION OF HOMOTRANSPLANTED KIDNEYS. Nature. 1963 Jul 20;199:257–260. doi: 10.1038/199257a0. [DOI] [PubMed] [Google Scholar]
  21. Laden A. M., Sinclair R. A. Thickening of arterial intima in rat cardiac allografts. A light and electron microscopic study. Am J Pathol. 1971 Apr;63(1):69–84. [PMC free article] [PubMed] [Google Scholar]
  22. Medawar P. B. The behaviour and fate of skin autografts and skin homografts in rabbits: A report to the War Wounds Committee of the Medical Research Council. J Anat. 1944 Oct;78(Pt 5):176–199. [PMC free article] [PubMed] [Google Scholar]
  23. Mintz B., Silvers W. K. "Intrinsic" immunological tolerance in allophenic mice. Science. 1967 Dec 15;158(3807):1484–1486. doi: 10.1126/science.158.3807.1484. [DOI] [PubMed] [Google Scholar]
  24. Mintz B., Silvers W. K. Histocompatibility antigens on melanoblasts and hair follicle cells. Cell-localized homograft rejection in allophenic skin grafts. Transplantation. 1970 May;9(5):497–505. doi: 10.1097/00007890-197005000-00009. [DOI] [PubMed] [Google Scholar]
  25. Pickaver A. H., Ratcliffe N. A., Williams A. E., Smith H. Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nat New Biol. 1972 Feb 9;235(58):186–187. doi: 10.1038/newbio235186a0. [DOI] [PubMed] [Google Scholar]
  26. ROGERS B. O., CONVERSE J. M., TAYLOR A. C., CAMPBELL R. M. Eosinophile in human skin homografting. Proc Soc Exp Biol Med. 1953 Mar;82(3):523–526. doi: 10.3181/00379727-82-20167. [DOI] [PubMed] [Google Scholar]
  27. TAYLOR A. C., LEHRFELD J. W. Determination of survival time of skin homografts in the rat by observation of vascular changes in the graft. Plast Reconstr Surg (1946) 1953 Dec;12(6):423–431. doi: 10.1097/00006534-195312000-00005. [DOI] [PubMed] [Google Scholar]
  28. WAKSMAN B. H. The pattern of rejection in rat skin homografts, and its relation to the vascular network. Lab Invest. 1963 Jan;12:46–57. [PubMed] [Google Scholar]
  29. WIENER J., SPIRO D., RUSSELL P. S. AN ELECTRON MICROSCOPIC STUDY OF THE HOMOGRAFT REACTION. Am J Pathol. 1964 Feb;44:319–347. [PMC free article] [PubMed] [Google Scholar]
  30. Wilson D. B., Billingham R. E. Lymphocytes and transplantation immunity. Adv Immunol. 1967;7:189–273. doi: 10.1016/s0065-2776(08)60129-7. [DOI] [PubMed] [Google Scholar]
  31. Zarem H. A. The microcirculatory events within full-thickness skin allografts (homografts) in mice. Surgery. 1969 Aug;66(2):392–397. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES