Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1979 Dec 1;150(6):1432–1447. doi: 10.1084/jem.150.6.1432

Soluble factors in tolerance and contact sensitivity to 2,4- dinitrofluorobenzene in mice. III. Histocompatibility antigens associated with the hapten dinitrophenol serve as target molecules on 2,4-dinitrofluorobenzene-immune T cells for soluble suppressor factor

PMCID: PMC2185740  PMID: 315993

Abstract

Previous studies have shown that suppression of 2,4- dinitrofluorobenzene (DNFB) contact sensitivity by soluble suppressor factor (SSF) requires that the donor of immune lymph node (LN) cells and of SSF share either the H-2K and/or H-2D region of the major histocompatibility complex. Thus, target or acceptor molecules for SSF appear to be coded for by genes within the H-2K and H-2D loci. Experiments were done to investigate the nature of these target molecules and to determine what cell types expressed them. It was found that purified lymph node T cells are suppressed by SSF indicating that T cells express the acceptor molecules. Adsorption experiments showed that the only cells capable of adsorbing the suppressor factor are DNFB- immune T cells from donors which share with the factor-producing strain either the H-2K or H-2D locus. This adsorption can be specifically blocked by pretreating the immune LN cells with antibodies directed against H-2K and/or H-2D determinants or against the hapten DNP but not by antibodies against Ia or theta-antigens. Collectively, these results indicate that the target molecules are expressed only by DNFB-immune T cells and are comprised of histocompatibility antigens associated with DNP.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burakoff S. J., Germain R. N., Dorf M. E., Benacerrah B. Inhibition of cell-mediated cytolysis of trinitrophenyl-derivatized target cells by alloantisera directed to the products of the K and D loci of the H-2 complex. Proc Natl Acad Sci U S A. 1976 Feb;73(2):625–629. doi: 10.1073/pnas.73.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Claman H. N., Miller S. D. Requirements for induction of T cell tolerance to DNFB: efficiency of membrane-associated DNFB. J Immunol. 1976 Aug;117(2):480–485. [PubMed] [Google Scholar]
  3. Davidson W. F., Parish C. R. A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods. 1975 Jun;7(2-3):291–300. doi: 10.1016/0022-1759(75)90026-5. [DOI] [PubMed] [Google Scholar]
  4. Elliott B. E., Nagy Z., Nabholz M., Pernis B. Antigen recognition by T cells activated in the mixed lymphocyte reaction: specific binding of allogeneic cell material after removal of surface-bound antigen by trypsin. Eur J Immunol. 1977 May;7(5):287–291. doi: 10.1002/eji.1830070509. [DOI] [PubMed] [Google Scholar]
  5. Erb P., Feldmann M., Hogg N. Role of macrophages in the generation of T helper cells. IV. Nature of genetically related factor derived from macrophages incubated with soluble antigens. Eur J Immunol. 1976 May;6(5):365–372. doi: 10.1002/eji.1830060512. [DOI] [PubMed] [Google Scholar]
  6. Golub E. S. Brain-associated theta antigen: reactivity of rabbit anti-mouse brain with mouse lymphoid cells. Cell Immunol. 1971 Aug;2(4):353–361. doi: 10.1016/0008-8749(71)90070-0. [DOI] [PubMed] [Google Scholar]
  7. Greene M. I., Fujimoto S., Sehon A. H. Regulation of the immune response to tumor antigens. III. Characterization of thymic suppressor factor(s) produced by tumor-bearing hosts. J Immunol. 1977 Aug;119(2):757–764. [PubMed] [Google Scholar]
  8. Greene M. I., Pierres A., Dorf M. E., Benacerraf B. The I-J subregion codes for determinats on suppressor factor(s) which limit the contact sensitivity response to picryl chloride. J Exp Med. 1977 Jul 1;146(1):293–296. doi: 10.1084/jem.146.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  10. Kontiainen S., Feldmann M. Suppressor-cell induction in vitro. IV. Target of antigen-specific suppressor factor and its genetic relationships. J Exp Med. 1978 Jan 1;147(1):110–122. doi: 10.1084/jem.147.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krammer P. H. Alloantigen receptors on activated T cells in mice. I. Binding of alloantigens and anti-idiotypic antibodies to the same receptors. J Exp Med. 1978 Jan 1;147(1):25–36. doi: 10.1084/jem.147.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moorhead J. W. Soluble factors in tolerance and contact sensitivity to 2,4-dinitrofluorobenzene in mice. I. Suppression of contact sensitivity by soluble suppressor factor released in vitro by lymph node cell populations containing specific suppressor cells. J Immunol. 1977 Jul;119(1):315–321. [PubMed] [Google Scholar]
  13. Moorhead J. W. Soluble factors in tolerance and contact sensitivity to DNFB in mice. II. Genetic requirements for suppression of contact sensitivity by soluble suppressor factor. J Immunol. 1977 Nov;119(5):1773–1777. [PubMed] [Google Scholar]
  14. Moorhead J. W. Tolerance and contact sensitivity to DNFA in mice. VIII. Identification of distinct T cell subpopulations that mediate in vivo and in vitro manifestations of delayed hypersensitivity. J Immunol. 1978 Jan;120(1):137–144. [PubMed] [Google Scholar]
  15. Nagy Z., Elliott B. E., Nabholz M. Specific binding of K- and I-region products of the H-2 complex to activated thymus-derived (T) cells belonging to different Ly subclasses. J Exp Med. 1976 Dec 1;144(6):1545–1553. doi: 10.1084/jem.144.6.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Namba Y., Waksman B. H. Regulatory substances produced by lymphocytes--IV. Further characterization of the inhibitor of DNA synthesis (IDS). Immunochemistry. 1977 Feb;14(2):143–147. doi: 10.1016/0019-2791(77)90293-2. [DOI] [PubMed] [Google Scholar]
  17. Pincus J. H., Gordon R. O. A microassay for the detection of murine H-2 antigens. Transplantation. 1971 Dec;12(6):509–513. doi: 10.1097/00007890-197112000-00016. [DOI] [PubMed] [Google Scholar]
  18. Ptak W., Zembala M., Gershon R. K. Intermediary role of macrophages in the passage of suppressor signals between T-cell subsets. J Exp Med. 1978 Aug 1;148(2):424–434. doi: 10.1084/jem.148.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation. 3. Suppression of plaque-forming cell responses in vitro by supernatant fluids from concanavalin A-activated spleen cell cultures. J Immunol. 1974 Apr;112(4):1360–1368. [PubMed] [Google Scholar]
  20. Rich S. S., David C. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. VII. Presence of I-C subregion determinants on mixed leukocyte reaction suppressor factor. J Exp Med. 1979 Jan 1;149(1):114–126. doi: 10.1084/jem.149.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rich S. S., Orson F. M., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. VI. Interaction of H-2 and non-H-2 genes in elaboration of mixed leukocyte reaction suppressor factor. J Exp Med. 1977 Nov 1;146(5):1221–1233. doi: 10.1084/jem.146.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. III. I-region control of suppressor cell interaction with responder cells in mixed lymphocyte reactions. J Exp Med. 1976 Mar 1;143(3):672–677. doi: 10.1084/jem.143.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. IV. Expression of a receptor for mixed lymphocyte reaction suppressor factor on activated T lymphocytes. J Exp Med. 1976 Nov 2;144(5):1214–1226. doi: 10.1084/jem.144.5.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmitt-Verhulst A. M., Sachs D. H., Shearer G. M. Cell-mediated lympholysis of trinitrophenyl-modified autologous lymphocytes. Confirmation of genetic control of response to trinitrophenyl-modified H-2 antigens by the use of anti-H-2 and anti-Ia antibodies. J Exp Med. 1976 Jan 1;143(1):211–217. doi: 10.1084/jem.143.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sobel A. T., Bokisch V. A., Müller-Eberhard H. J. C1q deviation test for the detection of immune complexes, aggregates of IgG, and bacterial products in human serum. J Exp Med. 1975 Jul 1;142(1):139–150. doi: 10.1084/jem.142.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sy M. S., Miller S. D., Claman H. N. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide. J Immunol. 1977 Jul;119(1):240–244. [PubMed] [Google Scholar]
  27. Sy M. S., Miller S. D., Moorhead J. W., Claman H. N. Active suppression of 1-fluoro-2,4-dinitrobenzene-immune T cells. Requirement of an auxiliary T cell induced by antigen. J Exp Med. 1979 May 1;149(5):1197–1207. doi: 10.1084/jem.149.5.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tada T., Taniguchi M., David C. S. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med. 1976 Sep 1;144(3):713–725. doi: 10.1084/jem.144.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tadakuma T., Kühner A. L., Rich R. R., David J. R., Pierce C. W. Biological expressions of lymphocyte activation. V. Characterization of a soluble immune response suppressor (SIRS) produced by concanavalin A-activated spleen cells. J Immunol. 1976 Jul;117(1):323–330. [PubMed] [Google Scholar]
  30. Takemori T., Tada T. Properties of antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. I. In vivo activity and immunochemical characterization. J Exp Med. 1975 Nov 1;142(5):1241–1253. doi: 10.1084/jem.142.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Taniguchi M., Miller J. F. Specific suppression of the immune response by a factor obtained from spleen cells of mice tolerant to human gamma-globulin. J Immunol. 1978 Jan;120(1):21–26. [PubMed] [Google Scholar]
  32. Taniguchi M., Tada T., Tokuhisa T. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. III. Dual gene control of the T-cell-mediated suppression of the antibody response. J Exp Med. 1976 Jul 1;144(1):20–31. doi: 10.1084/jem.144.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Theze J., Kapp J. A., Benacerraf B. Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) III. Immunochemical properties of the GAT-specific suppressive factor. J Exp Med. 1977 Apr 1;145(4):839–856. doi: 10.1084/jem.145.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas D. W., Roberts W. K., Talmage D. W. Regulation of the immune response: production of a soluble suppressor by immune spleen cells in vitro. J Immunol. 1975 May;114(5):1616–1622. [PubMed] [Google Scholar]
  35. Thèze J., Waltenbaugh C., Dorf M. E., Benacerraf B. Immunosuppressive factor(s) specific for L-glutamic acid50-L-tyrosine50 (GT) II. Presence of I-J determinants on the GT-suppressive factor. J Exp Med. 1977 Jul 1;146(1):287–292. doi: 10.1084/jem.146.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Warren R. W., Davie J. M. Antigen mediation of a late-acting suppressor T-cell activity. J Exp Med. 1977 Dec 1;146(6):1627–1639. doi: 10.1084/jem.146.6.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES