Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Nov;136(2):531–537. doi: 10.1128/jb.136.2.531-537.1978

Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae.

F R Taylor, L W Parks
PMCID: PMC218576  PMID: 361713

Abstract

The interconversion of free and esterified sterols was followed radioisotopically with [U-14C]acetate and [methyl-14C]methionine. In pulse-chase experiments, radioactivity first appeared mainly in unesterified sterols in exponential-phase cells. Within one generation time, the label equilibrated between the free and esterified sterol pools and subsequently accumulated in steryl esters in stationary-phase cells. When the sterol pools were prelabeled by growing cells aerobically to the stationary phase and the cells were diluted into unlabeled medium, the prelabeled steryl esters returned to the free sterol form under several conditions. (i) During aerobic growth, the prelabeled sterols decreased from 80% to 45% esters in the early exponential phase and then returned to 80% esters as the culture reached the stationary phase. (ii) Under anaerobic conditions, the percentage of prelabeled steryl esters declined continuously. When growth stopped, only 15% of the sterols remained esterified. (iii) In the presence of an inhibitor of sterol biosynthesis, which causes accumulation of a precursor to ergosterol, prelabeled sterols decreased to 40% steryl esters while the precursor was found preferentially in the esterified form. These results indicate that the bulk of the free sterol and steryl ester pools are freely interconvertible, with the steryl esters serving as a supply of free sterols. Furthermore, there is an active cellular control over what types of sterol are found in the free and esterified sterol pools.

Full text

PDF
531

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bailey R. B., Parks L. W. Yeast sterol esters and their relationship to the growth of yeast. J Bacteriol. 1975 Nov;124(2):606–612. doi: 10.1128/jb.124.2.606-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bard M., Woods R. A., Bartón D. H., Corrie J. E., Widdowson D. A. Sterol mutants of Saccharomyces cerevisiae: chromatographic analyses. Lipids. 1977 Aug;12(8):645–654. doi: 10.1007/BF02533759. [DOI] [PubMed] [Google Scholar]
  5. Brown M. S., Faust J. R., Goldstein J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J Clin Invest. 1975 Apr;55(4):783–793. doi: 10.1172/JCI107989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campagnoni C., Holmlund C. E., Whittaker N. The effect of triparanol on the composition of free and esterified sterols of Saccharomyces cerevisiae. Arch Biochem Biophys. 1977 Dec;184(2):555–560. doi: 10.1016/0003-9861(77)90465-9. [DOI] [PubMed] [Google Scholar]
  7. Clausen M. K., Christiansen K., Jensen P. K., Behnke O. Isolation of lipid particles from baker's yeast. FEBS Lett. 1974 Jul 15;43(2):176–179. doi: 10.1016/0014-5793(74)80994-4. [DOI] [PubMed] [Google Scholar]
  8. Gonzales R. A., Parks L. W. Acid-labilization of sterols for extraction from yeast. Biochim Biophys Acta. 1977 Dec 21;489(3):507–509. doi: 10.1016/0005-2760(77)90171-0. [DOI] [PubMed] [Google Scholar]
  9. Hayashi E., Hasegawa R., Tomita T. Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its mechanism. Reciprocal regulation of yeast acetyl-CoA carboxylase by fructose bisphosphate and citrate. J Biol Chem. 1976 Sep 25;251(18):5759–5769. [PubMed] [Google Scholar]
  10. Hays P. R., Neal W. D., Parks L. W. Physiological effects of an antimycotic azasterol on cultures of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1977 Aug;12(2):185–191. doi: 10.1128/aac.12.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hossack J. A., Rose A. H. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. J Bacteriol. 1976 Jul;127(1):67–75. doi: 10.1128/jb.127.1.67-75.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Illingworth R. F., Rose A. H., Beckett A. Changes in the lipid composition and fine structure of Saccharomyces cerevisiae during ascus formation. J Bacteriol. 1973 Jan;113(1):373–386. doi: 10.1128/jb.113.1.373-386.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karst F., Lacroute F. Ertosterol biosynthesis in Saccharomyces cerevisiae: mutants deficient in the early steps of the pathway. Mol Gen Genet. 1977 Sep 9;154(3):269–277. doi: 10.1007/BF00571282. [DOI] [PubMed] [Google Scholar]
  14. Madyastha P. B., Parks L. W. The effect of cultural conditons on the ergosterol ester components of yeast. Biochim Biophys Acta. 1969 Jun 10;176(4):858–862. doi: 10.1016/0005-2760(69)90267-7. [DOI] [PubMed] [Google Scholar]
  15. Nagai J., Kawamura S., Katsuki H. Occurrence of fatty acid esters of sterol intermediates in ergosterol synthesis by yeast during respiratory adaptation. J Biochem. 1977 Jun;81(6):1665–1673. doi: 10.1093/oxfordjournals.jbchem.a131626. [DOI] [PubMed] [Google Scholar]
  16. Proudlock J. W., Wheeldon L. W., Jollow D. J., Linnane A. W. Role of sterols in Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Mar 4;152(2):434–437. doi: 10.1016/0005-2760(68)90060-x. [DOI] [PubMed] [Google Scholar]
  17. Ramsey R. B., Davison A. N. Steryl esters and their relationship to normal and diseased human central nervous system. J Lipid Res. 1974 May;15(3):249–255. [PubMed] [Google Scholar]
  18. Skipski V. P., Smolowe A. F., Sullivan R. C., Barclay M. Separation of lipid classes by thin-layer chromatography. Biochim Biophys Acta. 1965 Oct 4;106(2):386–396. doi: 10.1016/0005-2760(65)90047-0. [DOI] [PubMed] [Google Scholar]
  19. Sobus M. T., Holmlund C. E., Whittaker N. F. Effects of the hypocholesteremic agent trifluperidol on the sterol, steryl ester, and fatty acid metabolism of Saccharomyces cerevisiae. J Bacteriol. 1977 Jun;130(3):1310–1316. doi: 10.1128/jb.130.3.1310-1316.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sobus M. T., Homlund C. E. Extraction of lipids from yeast. Lipids. 1976 Apr;11(4):341–348. doi: 10.1007/BF02544064. [DOI] [PubMed] [Google Scholar]
  21. Trocha P. J., Jasne S. J., Sprinson D. B. Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography. Biochemistry. 1977 Oct 18;16(21):4721–4726. doi: 10.1021/bi00640a029. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES