Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Apr 1;151(4):925–944. doi: 10.1084/jem.151.4.925

Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization

H Wekerle, U-P Ketelsen, M Ernst
PMCID: PMC2185829  PMID: 6966312

Abstract

We describe a new cellular component of normal mouse thymuses, which is isolated by fractionated trypsin dissociation of minced thymus tissue followed by repeated unit gravity sedimentation. These cells are of unusually large size, with diameters of 30 μm and more. They represent cellular complexes of single large cells filled with high numbers of lymphoid cells. The majority of the engulfed lymphoid cells is not only fully intact, as judged by morphological criteria, but, moreover, includes a high proportion of mitotic figures. Electron microscopic investigations reveal the epithelial character of the large thymic nurse cells (TNC). The peripherally situated cytoplasmic tonofilament streams, and characteristic vacuoles filled with coarse, unidentified material, closely resemble cytoplasmic organelles found in the cortical reticuloepithelial cells described in situ. The internalized lymphocytes are located within caveolae lined by plasma membranes. These TNC caveolae are completely sequestered, and have lost any communication with the extracellular space, as demonstrated by the inability of an electrondense marker, cationized ferritin, to diffuse into the perilymphocytic clefts. The structural interactions between the membranes of the engulfed thymocytes with the surrounding TNC caveolar membranes were investigated both in ultrathin sections and in freeze-etch preparates. Two distinct contact types between both membranes were discerned: (a) complete, close contact along the entire lymphocyte circumference, and (b) more frequently, contact restricted to discrete, localized areas. Judging from their size and distribution, the localized contacts could correspond particle aggregates of freeze-etch preparates, which morphologically resemble certain stages of gap junction. Furthermore, we regularly found square arrays of particles of uniform size, which so far have been thought to be typical for cell membranes actively engaged in ion exchange. Tight junction-like particle arrays, which were present on TNC outer membranes, and probably represented disrupted contacts between adjacent TNC in the intact tissue, could not be found on caveolar or lymphocyte membranes. Finally, one of the most conspicuous specializations of the TNC caveolar membrane were membrane invaginations, which were arranged mainly in groups, and which probably reflect endo- or exocytotoxic events. We investigated the surface antigen phenotype of TNC by indirect immunofluorescence, with monoclonal antibodies against determinants of H-2- complex subregions as well as against lymphocyte differentiation markers. Semiquantification was reached with flow cytofluorimetry, followed by morphological control by fluorescence microscopy. The surface antigen formula of TNC is: Ig(-), Thy-l(-), H-2K(++), I-A (++), I-E/C(+), H-D(++), Ly-1(-), Ly-2(-), Qat-4(-), Qat-5(-), and peanut agglutinin (PNA)(-). Thymic macrophages, which were identified by double fluorescence, with rhodamine- coupled zymosan as a phagocytosis marker, were serologically identical with TNC. Free thymocytes, in contrast, had the following antigen formula: Ig(-), Thy-1(++), H-2K(+/-), I-A(-), I-E/C(-), H-2D(+/-), Ly-1(+/-), Ly-2(+), Qat- 4(-), Qat-5(-), and PNA(+). The unprecedented finding of high numbers of dividing thymocytes sojourning within thymic epithelial cells, and the particular specializations of the TNC caveolar membranes surrounding these engulfed thymocytes is the basis of a hypothesis that postulates that an intraepithelial differentiation cycle is one essential step in, intrathymic T lymphocyte generation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beller D. I., Unanue E. R. Thymic macrophages modulate one stage of T cell differentiation in vitro. J Immunol. 1978 Nov;121(5):1861–1864. [PubMed] [Google Scholar]
  2. Bevan M. J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature. 1977 Sep 29;269(5627):417–418. doi: 10.1038/269417a0. [DOI] [PubMed] [Google Scholar]
  3. Cowing C., Schwartz B. D., Dickler H. B. Macrophage Ia antigens. I. macrophage populations differ in their expression of Ia antigens. J Immunol. 1978 Feb;120(2):378–384. [PubMed] [Google Scholar]
  4. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  5. Ellisman M. H., Rash J. E., Staehelin L. A., Porter K. R. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol. 1976 Mar;68(3):752–774. doi: 10.1083/jcb.68.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Forsum U., Klareskog L., Peterson P. A. Distribution of Ia-antigen-like molecules on non-lymphoid tissues. Scand J Immunol. 1979;9(4):343–349. doi: 10.1111/j.1365-3083.1979.tb03172.x. [DOI] [PubMed] [Google Scholar]
  7. Gershwin M. E., Ikeda R. M., Kruse W. L., Wilson F., Shifrine M., Spangler W. Age-dependent loss in New Zealand mice of morphological and functional characteristics of thymic epithelial cells. J Immunol. 1978 Mar;120(3):971–979. [PubMed] [Google Scholar]
  8. HUMBLE J. G., JAYNE W. H., PULVERTAFT R. J. Biological interaction between lymphocytes and other cells. Br J Haematol. 1956 Jul;2(3):283–294. doi: 10.1111/j.1365-2141.1956.tb06700.x. [DOI] [PubMed] [Google Scholar]
  9. Humbert F., Pricam C., Perrelet A., Orci L. Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J Ultrastruct Res. 1975 Jul;52(1):13–20. doi: 10.1016/s0022-5320(75)80018-9. [DOI] [PubMed] [Google Scholar]
  10. Hwang W. S., Ho T. Y., Luk S. C., Simon G. T. Ultrastructure of the rat thymus. A transmission, scanning electron microscope, and morphometric study. Lab Invest. 1974 Nov;31(5):473–487. [PubMed] [Google Scholar]
  11. Hämmerling G. J., Hämmerling U., Flaherty L. Qat-4 and Qat-5, new murine T-cell antigens governed by the Tla region and identified by monoclonal antibodies. J Exp Med. 1979 Jul 1;150(1):108–116. doi: 10.1084/jem.150.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hämmerling G. J., Lemke H., Hämmerling U., Höhmann C., Wallich R., Rajewsky K. Monoclonal antibodies against murine cell surface antigens: anti-H-2, anti-Ia and anti-T cell antibodies. Curr Top Microbiol Immunol. 1978;81:100–106. doi: 10.1007/978-3-642-67448-8_15. [DOI] [PubMed] [Google Scholar]
  13. Ioachim H. L. Emperipolesis of lymphoid cells in mixed cultures. Lab Invest. 1965 Oct;14(10):1784–1794. [PubMed] [Google Scholar]
  14. Jones P. P., Murphy D. B., McDevitt H. O. Two-gene control of the expression of a murine Ia antigen. J Exp Med. 1978 Oct 1;148(4):925–939. doi: 10.1084/jem.148.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KLUG H. [On the occurrence of lymphocytes in reticulum cells]. Experientia. 1962 Jul 15;18:317–318. doi: 10.1007/BF02151849. [DOI] [PubMed] [Google Scholar]
  16. Kapsenberg M. L., Leene W. Formation of B type gap junctions between PHA-stimulated rabbit lymphocytes. Exp Cell Res. 1979 Apr;120(1):211–222. doi: 10.1016/0014-4827(79)90551-2. [DOI] [PubMed] [Google Scholar]
  17. Klareskog L., Tjernlund U., Forsum U., Peterson P. A. Epidermal Langerhans cells express Ia antigens. Nature. 1977 Jul 21;268(5617):248–250. doi: 10.1038/268248a0. [DOI] [PubMed] [Google Scholar]
  18. Kruisbeek A. M., Kröse T. C., Zijlstra J. J. Increase in T cell mitogen responsiveness in rat thymocytes by thymic epithelial culture supernatant. Eur J Immunol. 1977 Jun;7(6):375–381. doi: 10.1002/eji.1830070610. [DOI] [PubMed] [Google Scholar]
  19. Landis D. M., Reese T. S. Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol. 1974 Jan;60(1):316–320. doi: 10.1083/jcb.60.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levine G. D., Rosai J., Bearman R. M., Polliack A. The fine structure of thymoma, with emphasis on its differential diagnosis. A study of ten cases. Am J Pathol. 1975 Oct;81(1):49–86. [PMC free article] [PubMed] [Google Scholar]
  21. Ling N. R., Acton A. B., Roitt I. M., Doniach D. Interaction of lymphocytes from immunized hosts with thyroid and other cells in culture. Br J Exp Pathol. 1965 Jun;46(3):348–359. [PMC free article] [PubMed] [Google Scholar]
  22. Llombart-Bosch A. Epithelio-reticular cell thymoma with lymphocytic "emperipolesis." An ultrastructural study. Cancer. 1975 Nov;36(5):1794–1803. doi: 10.1002/1097-0142(197511)36:5<1794::aid-cncr2820360534>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  23. Loor F. Mouse thymus reticulo-epithelial (RE) cells in vitro: isolation cultivation and preliminary characterization. Immunology. 1979 May;37(1):157–177. [PMC free article] [PubMed] [Google Scholar]
  24. Mandel T. Epithelial cells and lymphopoiesis in the cortex of guinea-pig thymus. Aust J Exp Biol Med Sci. 1969 Feb;47(1):153–155. doi: 10.1038/icb.1969.16. [DOI] [PubMed] [Google Scholar]
  25. Mandel T., Russell P. J. Differentation of foetal mouse thymus. Ultrastructure of organ cultures and of subcapsular grafts. Immunology. 1971 Oct;21(4):659–674. [PMC free article] [PubMed] [Google Scholar]
  26. McIntyre J. A., Gilula N. B., Karnovsky M. J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol. 1974 Jan;60(1):192–203. doi: 10.1083/jcb.60.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McIntyre J. A., Pierce C. W., Karnovsky M. J. The formation of septate-like junctional complexes between lymphoid cells in vitro. J Immunol. 1976 Jun;116(6):1582–1586. [PubMed] [Google Scholar]
  28. Mosier D. E., Pierce C. W. Functional maturation of thymic lymphocyte populations in vitro. J Exp Med. 1972 Dec 1;136(6):1484–1500. doi: 10.1084/jem.136.6.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Otto H. F. Untersuchungen zur Ultrastruktur lympho-epithelialer Thymustumoren unter besonderer Berücksichtigung der sog. "Emperipolesis". Virchows Arch A Pathol Anat Histol. 1978 Oct 3;379(4):335–349. doi: 10.1007/BF00464476. [DOI] [PubMed] [Google Scholar]
  30. Owen J. J., Jordan R. K., Robinson J. H., Singh U., Willcox H. N. In vitro studies on the generation of lymphocyte diversity. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):129–137. doi: 10.1101/sqb.1977.041.01.017. [DOI] [PubMed] [Google Scholar]
  31. Papiernik M., Nabarra B., Bach J. F. In vitro culture of functional human thymic epithelium. Clin Exp Immunol. 1975 Feb;19(2):281–287. [PMC free article] [PubMed] [Google Scholar]
  32. Pyke K. W., Gelfand E. W. Morphological and functional maturation of human thymic epithelium in culture. Nature. 1974 Oct 4;251(5474):421–423. doi: 10.1038/251421a0. [DOI] [PubMed] [Google Scholar]
  33. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976 Jul;25(1):129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  34. Roelants G. E., London J., Mayor-Withey K. S., Serrano B. Peanut agglutinin. II. Characterization of the Thy-1, Tla and Ig phenotype of peanut agglutinin-positive cells in adult, embryonic and nude mice using double immunofluorescence. Eur J Immunol. 1979 Feb;9(2):139–145. doi: 10.1002/eji.1830090209. [DOI] [PubMed] [Google Scholar]
  35. Rowden G., Lewis M. G., Sullivan A. K. Ia antigen expression on human epidermal Langerhans cells. Nature. 1977 Jul 21;268(5617):247–248. doi: 10.1038/268247a0. [DOI] [PubMed] [Google Scholar]
  36. Sandilands G. P., Reid F. M., Gray K. G., Anderson J. R. Lymphocyte emperipolesis revisited. I. Development of in vitro assay and preliminary characterisation of the lymphocyte subpopulation involved. Immunology. 1978 Aug;35(2):381–389. [PMC free article] [PubMed] [Google Scholar]
  37. Seemayer T. A., Lapp W. S., Bolande R. P. Thymic epithelial injury in graft-versus-host reactions following adrenalectomy. Am J Pathol. 1978 Nov;93(2):325–338. [PMC free article] [PubMed] [Google Scholar]
  38. Sellin D., Wallach D. F., Fischer H. Intercellular communication in cell-mediated cytotoxicity. Fluorescein transfer between H-2 d target cells and H-2 b lymphocytes in vitro. Eur J Immunol. 1971 Dec;1(6):453–458. doi: 10.1002/eji.1830010609. [DOI] [PubMed] [Google Scholar]
  39. Silver J., Russell W. A. Structural polymorphism of I-E subregion antigens determined by a gene in the H-2K to I-B genetic interval. Nature. 1979 May 31;279(5712):437–439. doi: 10.1038/279437a0. [DOI] [PubMed] [Google Scholar]
  40. Smith D. C. From extracellular to intracellular: the establishment of a symbiosis. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):115–130. doi: 10.1098/rspb.1979.0017. [DOI] [PubMed] [Google Scholar]
  41. Staehelin L. A. Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc Natl Acad Sci U S A. 1972 May;69(5):1318–1321. doi: 10.1073/pnas.69.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wanson J. C., Drochmans P., Mosselmans R., Ronveaux M. F. Adult rat hepatocytes in primary monolayer culture. Ultrastructural characteristics of intercellular contacts and cell membrane differentiations. J Cell Biol. 1977 Sep;74(3):858–877. doi: 10.1083/jcb.74.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wekerle H., Cohen I. R., Feldman M. Thymus reticulum cell cultures confer T cell properties on spleen cells from thymus-deprived animals. Eur J Immunol. 1973 Dec;3(12):745–748. doi: 10.1002/eji.1830031202. [DOI] [PubMed] [Google Scholar]
  44. Wiman K., Curman B., Forsum U., Klareskog L., Malmnäs-Tjernlund U., Rask L., Trägårdh L., Peterson P. A. Occurrence of Ia antigens on tissues on non-lymphoid origin. Nature. 1978 Dec 14;276(5689):711–713. doi: 10.1038/276711a0. [DOI] [PubMed] [Google Scholar]
  45. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zinkernagel R. M., Callahan G. N., Klein J., Dennert G. Cytotoxic T cells learn specificity for self H-2 during differentiation in the thymus. Nature. 1978 Jan 19;271(5642):251–253. doi: 10.1038/271251a0. [DOI] [PubMed] [Google Scholar]
  47. Zinkernagel R. M. Thymus and lymphohemopoietic cells: their role in T cell maturation in selection of T cells' H-2-restriction-specificity and in H-2 linked Ir gene control. Immunol Rev. 1978;42:224–270. doi: 10.1111/j.1600-065x.1978.tb00264.x. [DOI] [PubMed] [Google Scholar]
  48. von Boehmer H., Haas W., Jerne N. K. Major histocompatibility complex-linked immune-responsiveness is acquired by lymphocytes of low-responder mice differentiating in thymus of high-responder mice. Proc Natl Acad Sci U S A. 1978 May;75(5):2439–2442. doi: 10.1073/pnas.75.5.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES