Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Nov;136(2):647–656. doi: 10.1128/jb.136.2.647-656.1978

Biosynthesis and regulation of fructose-1,6-bisphosphatase and phosphofructokinase in Saccharomyces cerevisiae grown in the presence of glucose and gluconeogenic carbon sources.

J J Foy, J K Bhattacharjee
PMCID: PMC218590  PMID: 213420

Abstract

The mode of synthesis and the regulation of fructose-1,6-bisphosphatase (Fbpase), a gluconeogenic enzyme, and phosphofructokinase (PFK), a glycolytic enzyme, were investigated in Saccharomyces cerevisiae after growth in the presence of different concentrations of glucose or various gluconeogenic carbon sources. The activity of FBPase appeared in the cells after the complete disappearance of glucose from the growth medium with a concomitant increase of the pH and no significant change in the levels of accumulated ethanol. The appearance of FBPase activity following glucose depletion was dependent upon the synthesis of protein. The FBPase PFK were present in glucose-, ethanol-, glycerol-, lactate-, or pyruvate-grown cells; however, the time of appearance and the levels of both these enzymes varied. The FBPase activity was always higher in 1% glucose-grown cells than in cells grown in the presence of gluconeogenic carbon sources. Phosphoglucose isomerase activity did not vary significantly. Addition of glucose to an FBPase and PFK synthesizing culture resulted in a complete loss, followed by a reappearance, of PFK activity. In the presence of cycloheximide the disappearance of glucose and the changes in the levels of FBPase and PFK were decreased significantly. It is concluded that S. cerevisiae exhibits a more efficient synthesis of FBPase after the exhaustion of glucose compared to the activity present in cells grown in the presence of exogenous gluconeogenic carbon sources. Two metabolically antagonistic enzymes, FBPase and PFK, are present during the transition phase, but not during the exponential phase, of growth, and the decay or inactivation of these enzymes in vivo may be dependent upon a glucose-induced protease activity.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgia P., Sypherd P. S. Control of beta-glucosidase synthesis in Mucor racemosus. J Bacteriol. 1977 May;130(2):812–817. doi: 10.1128/jb.130.2.812-817.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foy J. J., Bhattacharjee J. K. Gluconeogenesis in Saccharomyces cerevisiae: determination of fructose-1,6-bisphosphatase activity in cells grown in the presence of glycolytic carbon sources. J Bacteriol. 1977 Feb;129(2):978–982. doi: 10.1128/jb.129.2.978-982.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GANCEDO C., SALAS M. L., GINER A., SOLS A. RECIPROCAL EFFECTS OF CARBON SOURCES ON THE LEVELS OF AN AMP-SENSITIVE FRUCTOSE-1,6-DIPHOSPHATASE AND PHOSPHOFRUCTOKINASE IN YEAST. Biochem Biophys Res Commun. 1965 Jun 18;20:15–20. doi: 10.1016/0006-291x(65)90944-7. [DOI] [PubMed] [Google Scholar]
  4. Gancedo C., Gancedo J. M., Sols A. Metabolite repression of fructose 1,6-diphosphatase in yeast. Biochem Biophys Res Commun. 1967 Mar 9;26(5):528–531. doi: 10.1016/0006-291x(67)90096-4. [DOI] [PubMed] [Google Scholar]
  5. Gancedo C. Inactivation of fructose-1,6-diphosphatase by glucose in yeast. J Bacteriol. 1971 Aug;107(2):401–405. doi: 10.1128/jb.107.2.401-405.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grossman L. I., Goldring E. S., Marmur J. Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis. J Mol Biol. 1969 Dec 28;46(3):367–376. doi: 10.1016/0022-2836(69)90182-x. [DOI] [PubMed] [Google Scholar]
  7. Haarasilta S., Oura E. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker's yeast. The biphasic growth. Eur J Biochem. 1975 Mar 3;52(1):1–7. doi: 10.1111/j.1432-1033.1975.tb03966.x. [DOI] [PubMed] [Google Scholar]
  8. Haarasilta S., Taskinen L. Location of three key enzymes of gluconeogenesis in baker's yeast. Arch Microbiol. 1977 May 13;113(1-2):159–161. doi: 10.1007/BF00428597. [DOI] [PubMed] [Google Scholar]
  9. Holzer H., Betz H., Ebner E. Intracellular proteinases in microorganisms. Curr Top Cell Regul. 1975;9:103–156. doi: 10.1016/b978-0-12-152809-6.50011-1. [DOI] [PubMed] [Google Scholar]
  10. Katz J., Rognstad R. Futile cycles in the metabolism of glucose. Curr Top Cell Regul. 1976;10:237–289. doi: 10.1016/b978-0-12-152810-2.50013-9. [DOI] [PubMed] [Google Scholar]
  11. Maitra P. K., Lobo Z. A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem. 1971 Jan 25;246(2):475–488. [PubMed] [Google Scholar]
  12. Molano J., Gancedo C. Specific inactivation of fructose 1,6-bisphosphatase from Saccharomyces cerevisiae by a yeast protease. Eur J Biochem. 1974 May 2;44(1):213–217. doi: 10.1111/j.1432-1033.1974.tb03475.x. [DOI] [PubMed] [Google Scholar]
  13. Newsholme E. A., Crabtree B., Higgins S. J., Thornton S. D., Start C. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J. 1972 Jun;128(1):89–97. doi: 10.1042/bj1280089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pontremoli S., Melloni E., Salamino F., Franzi A. T., De Flora A., Horecker B. L. Changes in rabbit-liver lysosomes and fructose 1,6-bisphosphatase induced by cold and fasting. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3674–3678. doi: 10.1073/pnas.70.12.3674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prevost C., Moses V. Pool sizes of metabolic intermediates and their relation to glucose repression of beta-galactosidase synthesis in Escherichia coli. Biochem J. 1967 May;103(2):349–357. doi: 10.1042/bj1030349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schamhart D. H., Van Den Heijkant M. P., Van De Poll K. W. Inactivation of fructose diphosphatase by sucrose in yeast. J Bacteriol. 1977 Apr;130(1):526–528. doi: 10.1128/jb.130.1.526-528.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sy J., Richter D. Content of cyclic 3',5'-adenosine monophosphate and adenylyl cyclase in yeast at various growth conditions. Biochemistry. 1972 Jul 18;11(15):2788–2791. doi: 10.1021/bi00765a009. [DOI] [PubMed] [Google Scholar]
  19. van de Poll K. W., Kerkenaar A., Schamhart D. H. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. J Bacteriol. 1974 Mar;117(3):965–970. doi: 10.1128/jb.117.3.965-970.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES