Abstract
Experimental evidence presented in this paper suggests that the T cell hyperreactivity of NZB mice against H-2 identical target cells is a true primary response and not the consequence of an in vivo T cell autoimmune priming event. Based on additional data, we believe an elevated potential of T cell help to be present in NZB mice, which facilitates the observed hyperreactivity F1 hybrids of NZB and normal strains of mice inherited the capacity to hyperreact against H-2 identical cells in an H-2-unrestricted fashion. Because the hybrids tested possess both Qa-1 alleles--Qa-1b and Qa-1a--our experiments either indicate the existence of heterogeneity within the Qa-1b system or of an H-2-unrestricted response against additional target antigens. The T cell hyperreactivity might prove to be a valuable tool in further investigations of the pathomechanism of autoimmune disease.
Full Text
The Full Text of this article is available as a PDF (751.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevan M. J. Cytotoxic t-cell response to histocompatibility antigens: the role of H-2. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):519–527. doi: 10.1101/sqb.1977.041.01.060. [DOI] [PubMed] [Google Scholar]
- Bevan M. J., Langman R. E., Cohn M. H-2 antigen-specific cytotoxic T cells induced by concanavalin A: estimation of their relative frequency. Eur J Immunol. 1976 Mar;6(3):150–156. doi: 10.1002/eji.1830060303. [DOI] [PubMed] [Google Scholar]
- Bonavida B. Concanavalin A-mediated activation of antigen-primed lymphocytes into secondary cytotoxic lymphocytes. J Exp Med. 1977 Feb 1;145(2):293–301. doi: 10.1084/jem.145.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botzenhardt U., Klein J., Ziff M. Primary in vitro cell-mediated lympholysis reaction of NZB mice against unmodified targets syngeneic at the major histocompatibility complex. J Exp Med. 1978 May 1;147(5):1435–1448. doi: 10.1084/jem.147.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor H., Boyse E. A. Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med. 1975 Jun 1;141(6):1390–1399. doi: 10.1084/jem.141.6.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantor H., McVay-Boudreau L., Hugenberger J., Naidorf K., Shen F. W., Gershon R. K. Immunoregulatory circuits among T-cell sets. II. Physiologic role of feedback inhibition in vivo: absence in NZB mice. J Exp Med. 1978 Apr 1;147(4):1116–1125. doi: 10.1084/jem.147.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton W. D., Katz D. H., Dixon F. J. Antigen-specific immunocompetency, B cell function, and regulatory helper and suppressor T cell activities in spontaneously autoimmune mice. J Immunol. 1979 Dec;123(6):2627–2636. [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Kastner D. L., Rich R. R., Chu L. Qa-1-associated antigens. II. Evidence for functional differentiation from H-2K and H-2D antigens. J Immunol. 1979 Sep;123(3):1239–1244. [PubMed] [Google Scholar]
- Kastner D. L., Rich R. R., Shen F. W. Qa-1-associated antigens. I. Generation of H-2-nonrestricted cytotoxic T lymphocytes specific for determinants of the Qa-1 region. J Immunol. 1979 Sep;123(3):1232–1238. [PubMed] [Google Scholar]
- Lafferty K. J., Misko I. S., Cooley M. A. Allogeneic stimulation modulates the in vitro response of T cells to transplantation antigen. Nature. 1974 May 17;249(454):275–276. doi: 10.1038/249275a0. [DOI] [PubMed] [Google Scholar]
- Pilarski L. M. A requirement for antigen-specific helper T cells in the generation of cytotoxic T cells from thymocyte precursors. J Exp Med. 1977 Mar 1;145(3):709–725. doi: 10.1084/jem.145.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rich R. R., Sedberry D. A., Kastner D. L., Chu L. Primary in vitro cytotoxic response of NZB spleen cells to Qa-1b-associated antigenic determinants. J Exp Med. 1979 Dec 1;150(6):1555–1560. doi: 10.1084/jem.150.6.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryser J. E., Cerottini J. C., Brunner K. T. Generation of cytolytic T lymphocytes in vitro. IX. induction of secondary CTL responses in primary long-term MLC by supernatants from secondary MLC. J Immunol. 1978 Feb;120(2):370–377. [PubMed] [Google Scholar]
- Simpson E., Gordon R., Taylor M., Mertin J., Chandler P. Micromethods for induction and assay of mouse mixed lymphocyte reactions and cytotoxicity. Eur J Immunol. 1976 Jul;5(7):451–455. doi: 10.1002/eji.1830050705. [DOI] [PubMed] [Google Scholar]
- Steinberg A. D. Pathogenesis of autoimmunity in New Zealand mice. V. Loss of thymic suppressor function. Arthritis Rheum. 1974 Jan-Feb;17(1):11–14. doi: 10.1002/art.1780170103. [DOI] [PubMed] [Google Scholar]
- Theofilopoulos A. N., Shawler D. L., Katz D. H., Dixon F. J. Patterns of immune reactivity in autoimmune murine strains. I. Cell-mediated immune responses induced by H-2 indentical and H-2 incompatible stimulator cells. J Immunol. 1979 Jun;122(6):2319–2327. [PubMed] [Google Scholar]