Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Oct 1;152(4):759–770. doi: 10.1084/jem.152.4.759

Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation

PMCID: PMC2185955  PMID: 6158548

Abstract

Studies in our laboratory and elsewhere have shown that it is possible to propagate antigen-specific murine T cells in vitro with resultant specific stepwise enrichment of antigen-induced proliferative cells. The proliferative responses of these T cells are antigen specific and dependent upon the presence of antigen-presenting cells (spleen cells) that share the I-A subregion with the proliferating T cell. Using techniques of soft-agar cloning, it has been further possible to isolate clones of antigen-reactive T lymphocytes from such long-term cultures. Data suggesting that these were clones of antigen-reactive T cells were obtained by studying the recognition of antigen in association with antigen-presenting cells with a panel of such clones of antigen-reactive T cells. Proof of clonality was obtained by subcloning. Clones derived from F1-immune mice can be divided into three separate categories: one clone recognizes antigen in association with antigen-presenting determinants of parent A and the F1; the second type recognizes antigen in association with antigen-presenting determinants of parent B and the F1; and the third type recognizes antigen only in association with antigen-presenting determinants of the F1 mouse. Genetic studies on the major histocompatibility complex requirements for antigen presentation to such F1-reactive T cell clones suggests that the hybrid antigen-presenting determinant in this system results from transcomplementation of products of the I-A region of haplotypes a and b. These studies support the concept developed in our laboratory that there exist unique F1 hybrid determinants on (A/J X C57BL/6) F1 cells and suggest that these determinants can be utilized physiologically by hybrid mice in immunocompetent cellular interactions.

Full Text

The Full Text of this article is available as a PDF (758.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach F. H., Inouye H., Hank J. A., Alter B. J. Human T lymphocytes clones reactive in primed lymphocyte typing and cytotoxicity. Nature. 1979 Sep 27;281(5729):307–309. doi: 10.1038/281307a0. [DOI] [PubMed] [Google Scholar]
  2. Baker P. E., Gillis S., Smith K. A. Monoclonal cytolytic T-cell lines. J Exp Med. 1979 Jan 1;149(1):273–278. doi: 10.1084/jem.149.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Sasson S. Z., Paul W. E., Shevach E. M., Green I. In vitro selection and extended culture of antigen-specific T lymphocytes. II. Mechanisms of selection. J Immunol. 1975 Dec;115(6):1723–1730. [PubMed] [Google Scholar]
  4. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  5. Corradin G., Etlinger H. M., Chiller J. M. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell-dependent proliferative response with lymph node cells from primed mice. J Immunol. 1977 Sep;119(3):1048–1053. [PubMed] [Google Scholar]
  6. Fathman C. G., Collavo D., Davies S., Nabholz M. In vitro secondary MLR. I. Kinetics of proliferation and specificity of in vitro primed responder cells. J Immunol. 1977 Apr;118(4):1232–1238. [PubMed] [Google Scholar]
  7. Fathman C. G., Hengartner H. Clones of alloreactive T cells. Nature. 1978 Apr 13;272(5654):617–618. doi: 10.1038/272617a0. [DOI] [PubMed] [Google Scholar]
  8. Fathman C. G., Hengartner H. Crossreactive mixed lymphocyte reaction determinants recognized by cloned alloreactive T cells. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5863–5866. doi: 10.1073/pnas.76.11.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fathman C. G., Nabholz M. In vitro secondary mixed leukocyte reaction (MLR). II. Interaction MLR determinants expressed by F1 cells. Eur J Immunol. 1977 Jun;7(6):370–374. doi: 10.1002/eji.1830070609. [DOI] [PubMed] [Google Scholar]
  10. Fathman C. G., Watanabe T., Augustin A. In vitro secondary MLR. III: Hybrid histocompatibility determinants. J Immunol. 1978 Jul;121(1):259–264. [PubMed] [Google Scholar]
  11. Gillis S., Smith K. A. Long term culture of tumour-specific cytotoxic T cells. Nature. 1977 Jul 14;268(5616):154–156. doi: 10.1038/268154a0. [DOI] [PubMed] [Google Scholar]
  12. Hengartner H., Fathman C. G. Clones of alloreactive T cells. I. A. unique homozygous MLR-stimulating determinant present on B6 stimulators. Immunogenetics. 1980;10(2):175–184. doi: 10.1007/BF01561566. [DOI] [PubMed] [Google Scholar]
  13. Jones P. P. Analysis of H-2 and Ia molecules by two-dimensional gel electrophoresis. J Exp Med. 1977 Nov 1;146(5):1261–1279. doi: 10.1084/jem.146.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kontiainen S., Simpson E., Bohrer E., Beverley P. C., Herzenberg L. A., Fitzpatrick W. C., Vogt P., Torano A., McKenzie I. F., Feldmann M. T-cell lines producing antigen-specific suppressor factor. Nature. 1978 Aug 3;274(5670):477–480. doi: 10.1038/274477a0. [DOI] [PubMed] [Google Scholar]
  15. Lafuse W. P., McCormick J. F., David C. S. Serological and biochemical identification of hybrid Ia antigens. J Exp Med. 1980 Mar 1;151(3):709–715. doi: 10.1084/jem.151.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lotze M. T., Strausser J. L., Rosenberg S. A. In vitro growth of cytotoxic human lymphocytes. II. Use of T cell growth factor (TCGF) to clone human T cells. J Immunol. 1980 Jun;124(6):2972–2978. [PubMed] [Google Scholar]
  17. Macdonald H. R., Engers H. D., Cerottini J. C., Brunner K. T. Generation of cytotoxic T lymphocytes in vitro. II. Effect of repeated exposure to alloantigens on the cytotoxic activity of long-term mixed leukocyte cultures. J Exp Med. 1974 Sep 1;140(3):718–730. doi: 10.1084/jem.140.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nabholz M., Engers H. D., Collavo D., North M. Cloned T-cell lines with specific cytolytic activity. Curr Top Microbiol Immunol. 1978;81:176–187. doi: 10.1007/978-3-642-67448-8_29. [DOI] [PubMed] [Google Scholar]
  19. Paul W. E., Shevach E. M., Thomas D. W., Pickeral S. F., Rosenthal A. S. Genetic restriction in T-lymphocyte activation by antigen-pulse peritoneal exudate cells. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):571–578. doi: 10.1101/sqb.1977.041.01.066. [DOI] [PubMed] [Google Scholar]
  20. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schrier R. D., Skidmore B. J., Kurnick J. T., Goldstine S. N., Chiller J. M. Propagation of antigen-specific T cell helper function in vitro. J Immunol. 1979 Dec;123(6):2525–2531. [PubMed] [Google Scholar]
  22. Schwartz R. H., Paul W. E. T-lymphocyte-enriched murine peritoneal exudate cells. II. Genetic control of antigen-induced T-lymphocyte proliferation. J Exp Med. 1976 Mar 1;143(3):529–540. doi: 10.1084/jem.143.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  24. Sprent J. Two subgroups of T helper cells in F1 hybrid mice revealed by negative selection to heterologous erythrocytes in vivo. J Immunol. 1978 Nov;121(5):1691–1695. [PubMed] [Google Scholar]
  25. Sredni B., Tse H. Y., Schwartz R. H. Direct cloning and extended culture of antigen-specific MHC-restricted, proliferating T lymphocytes. Nature. 1980 Feb 7;283(5747):581–583. doi: 10.1038/283581a0. [DOI] [PubMed] [Google Scholar]
  26. Taniguchi M., Miller J. F. Specific suppressive factors produced by hybridomas derived from the fusion of enriched suppressor T cells and a T lymphoma cell line. J Exp Med. 1978 Aug 1;148(2):373–382. doi: 10.1084/jem.148.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taussig M. J., Corvalan J. R., Binns R. M., Holliman A. Production of an H--2-related suppressor factor by a hybrid T-cell line. Nature. 1979 Jan 25;277(5694):305–308. doi: 10.1038/277305a0. [DOI] [PubMed] [Google Scholar]
  28. Watanabe T., Kimoto M., Maruyama S., Kishimoto T., Yamamura Y. Regulation of antibody response in different immunoglobulin classes. V. Establishment of T hybrid cell line secreting IgE class-specific suppressor factor. J Immunol. 1978 Nov;121(5):2113–2117. [PubMed] [Google Scholar]
  29. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ziegler K., Unanue E. R. The specific binding of Listeria monocytogenes-immune T lymphocytes to macrophages. I. Quantitation and role of H-2 gene products. J Exp Med. 1979 Nov 1;150(5):1143–1160. doi: 10.1084/jem.150.5.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. von Boehmer H., Hengartner H., Nabholz M., Lernhardt W., Schreier M. H., Haas W. Fine specificity of a continuously growing killer cell clone specific for H-Y antigen. Eur J Immunol. 1979 Aug;9(8):592–597. doi: 10.1002/eji.1830090804. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES